

B-physics analysis software: FDR and beyond

James Catmore, Guennadi Borissov (Lancaster) Pavel Reznicek (Charles University, Prague)

- The group will play a full part in FDR-1 as B-physics will play an important role in the early measurements of ATLAS
- Requirements of FDR:
 - Preparation of data for bytestream sample
 - Defining content of analysis data (DPD)
 - Defining event TAG content and preparing code
 - Preparing analysis code for FDR analysis (Feb-Apr)

What makes B-physics events unique?

- B-hadron decays are long chains typically containing several nodes
 - There are a wide variety of decay topologies
- B-trigger signatures (muons, electrons and jets) are low-pt objects which lead to smaller event sizes
- To find B-decay chains
 - Start from identified leptons to form J/ψ or dilepton signatures
 - Form up all possible combinations of remaining tracks matching a topology (can be dozens of possibilities for the complex channels)
 - Select/reject them with constrained vertexing
 - Each topology requires a different vertexing configuration

Implications

- Only practical to search for one type of topology in a single analysis task
- We must be able to run vertexing in the physics analysis
- Not practical to make "User Data" before the final ROOT-based analysis
 - Too many potential decay candidates
 - Too many topologies with different vertexing configurations
 - DPD would become impractically large
- No thinning possible (or necessary due to small event sizes)
- Final output of the analysis should be the final n-tuples containing B-meson candidates and their descendants

B-Physics preparations for FDR-I: data sample and content

- I. Data sample preparation
 - The B-events selected for the FDR-1 will dominate the early data taking
 - pp→J/ψ X, pp→Y, bb→J/ψ X, bb→µµ, cc→µµ
- 2. Analysis data content
 - Analysis data for FDR is Derived Physics Data (DPD) = slimmed, thinned AOD with UserData added if required
 - No UserData in B-physics DPD
 - No thinning possible (or necessary due to smaller event sizes)

B-physics DPD contents for FDR-1

- Stream I.ItemList = ['EventInfo#*', 'TrackRecordCollection#*']
- Stream I.ItemList += ["VxContainer#VxPrimaryCandidate"]
- Stream I.ItemList += ['ElectronContainer#ElectronAODCollection']
- Stream I.ItemList += ['PhotonContainer#PhotonAODCollection']
- Stream I.ItemList += ['egDetailContainer#egDetailAOD']
- Stream I.ItemList += ['Analysis::MuonContainer#*StacoMuonCollection']
- Stream I.ItemList += ['Analysis::MuonContainer#*MuidMuonCollection']
- Stream I.ItemList += ['Analysis::MuonContainer#*CaloMuonCollection']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*MuTagTrackParticles']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*MuidCombTrackParticles']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*MuonboyTrackParticles']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*StacoTrackParticles']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*MooreTrackParticles']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*MuonboyMuonSpectroOnlyTrackParticles']
- Stream I.ItemList += ['Rec::TrackParticleContainer#*TrackParticleCandidate']

Stream I.ItemList += ['ParticleJetContainer#*Cone4H1TowerParticleJets']

ames Catmore 10th January 2008, ATLAS-UK meeting, Durham

Event info

PriVtx

Muons

Tracks

VCASTER

E-gamma

- All B-physics events are contained in the Muon Stream
- The group has committed code to PhysicsAnalysis/ BPhys/BPhysTagTools to be run in FDR-1 and data taking
 - Three tag signatures are ready for FDR-1 which represent early physics

 $(1) Any \mu \mu (2) J/\psi \rightarrow \mu \mu (3) \Upsilon \rightarrow \mu \mu$

BPhysTagTools

- Currently writing three bits of information
- Algorithm proceeds as follows:
 - I. Does either Muon collection contain at least two muons with pt>6GeV?
 - 2. Can any of these muon pairs be successfully fitted to a vertex with an invariant mass in a window around the J/ψ ?
 - 3. Can any of these muon pairs be successfully fitted to a vertex with an invariant mass in a window around the Υ ?

Current B-physics TAG

B-physics TAG list (under development)

FDR-I:

 $J/\psi \to \mu\mu$ $\mu\mu$ (later changed to "rare" mu mu) \Rightarrow $\Upsilon \to \mu \mu$ $\mu + D_s \rightarrow hadrons$ \Rightarrow $\mu + J/\psi \rightarrow ee$ \Rightarrow $B \to \mu \mu$ \Rightarrow $\Rightarrow \quad \mu + \gamma$ $\Rightarrow \mu + e$

LANCASTER UNIVERSITY

B-Physics preparations for FDR-I: physics analysis code

• The group currently has two analysis platforms

BPhysAnalysis

- Well established; used for CSC
- PhysicsAnalysis/BPhys
- Direct analysis on AOD objects in Athena
- Input = AOD file
- Output = flat ROOT n-tuple

AAna

- New code under development
- PhysicsAnalysis/BPhys/AAna
- Converts AOD into a simple binary format which allows analysis to be run *outside* Athena as a stand-alone C++ program
- Output = flat ROOT n-tuple

James Catmore 10th January 2008, ATLAS-UK meeting, Durham

Vertexing and composite particles

I. Vertex finding

- All tools available to reconstruction are available in analysis
- Mass and pointing constraints available
- 2. Composite particles
 - E.g. it is possible to combine two muons to make a J/ψ
 - J/ψ is of the same class as the muons
 - Implemented separately from tracking classes (tracks, vertices)

Vertexing requirements

- B-physics group hold regular meetings with the ID reconstruction group
- MASS constraints
- POINTING constraints
- Complete covariance matrix
- Ability to simultaneously fit multi-node decays

Highly flexible

Vertexing requirements

- B-physics group hold regular meetings with the ID reconstruction group
- MASS constraints
- POINTING constraints
- Complete covariance matrix
- Ability to simultaneously fit multi-node decays

ames Catmore

BPhysAnalysis package

- Consists of three sub-packages
 - BPhysAnalysisObjects utility classes for vertexing
 - BPhysAnalysisTools tools for vertexing, selection, combinatorics, truth
 - BPhysExamples the analysis algorithms which read AOD and produce ntuples
 - Analysts design their own ntuple structure
 - One n-tuple structure per decay topology
 - All CSC analyses implemented as examples
- Full access to all Athena services including vertexing (CDF, VKalVrt)
- Composite particle being implemented in collaboration with I.D. reconstruction group

AAna analysis package

- New package currently under development; based on code deployed in the D0 experiment
 - Exists as an Athena package; can run "as is" Athena or can convert AOD into a binary format to allow running as stand-alone C++
 - Simple, easily extendible analysis classes; composite particles and vertexing implemented
- Very rapid compilation (<I second) and execution (<Ims/event) leading to efficient development cycle
- Can run on any Linux or Mac platform; complete package occupies ~230kb; can send whole distribution in Sandbox so trivial to run on Grid
- Stand-alone mode cannot access Athena services and Athena tools cannot handle non-Athena classes
- FDR-1 will be an excellent opportunity to test the value of this code as a means of quick algorithm development and cross-checking

- The B-physics group's involvement for the FDR include
 - Data preparation and definition of DPD
 - Event TAG definition, implementation and testing
 - Preparation of physics analysis code
- Two complementary analysis platforms available for development of analyses and final processing
 - FDR-1 will provide essential experience which will guide our preparations for data taking

