

Trigger Study for ttH, H→bb

Catrin Bernius Simon Dean, Nikos Konstantinidis (UCL)

> ATLAS UK meeting Durham, 09.01.2008

Semileptonic ttH, H→bb channel

- Lepton Preselection:
 - 1 isolated lepton
 - Electrons:
 - author = 1 or 3
 - isEM & 0xFF
 - Etcone20/p_T=0.15
 - p_T >25GeV, |η|<2.5
 - Muons:
 - Author = 1
 - Etcone20/p_T=0.3
 - p_T >20GeV, |η|<2.5
 - D_0 vtx ≤ 0.05 mm
 - $\chi^2 < 30$
- 6 jets with pt>20 GeV, |eta|<5
 - Of which 4 jets $|\eta| < 2.5$
 - Soft muon correction and out of cone correction

Final State: 6 jets (of which 4 are b-jets), lepton & missing E_T

https://twiki.cern.ch/twiki/bin/view/Atlas/TthhbbAnalysisPreselection

Datasets and Efficiency and Caveats in 12.0.6

- Semileptonic ttH dataset (rel. 12.0.6):
 - trig1_misal1_mc12_V1_005870.ttH_poslepnu_jj_bb.recon.AOD.v12000601_tid008657
 - trig1_misal1_mc12_V1_005871.ttH_neglepnu_jj_bb.recon.AOD.v12000601_tid008658
- Efficiencies are caclulated after the preselection:
 - $\epsilon = \#$ (pass trigger & preselection) / # (pass preselection)
 - higher statistics after preselection vs final selection
 - cuts after preselection don't interfere significantly with trigger efficiency
- Studied trigger signatures and caveats in 12.0.6

trigger item	Level 1 (threshold)	Level 2	Eventfilter	comments
e25i	L1_EM25 (18 GeV)	L2_e25i	EF_e25i	IDScan used at L2;
	EM ring isol = 3 GeV			
	HAD isol = 2 GeV			
	Had ring isol = 2 GeV			
e60	L1_EM60 (50 GeV)	L2_e60	EF_e60	IDScan used at L2
mu20i	L1_MU20 (20 GeV)	L2_mu20i	EF_mu20i	no isolation

UCL

Trigger Efficiency of mu20(i)

Trigger Efficiency of e25i

Catrin Bernius, UCL

Trigger Efficiency of e60

Catrin Bernius, UCL

Trigger Efficiency of e25i || e60

Efficiencies of Trigger Items

	s(e25i/e60)	_	number of events where electron passed e25i/e60						
	2(0251/000)	_	number of events with electron from W (truth information)						
	e(mu20i)	_	number of events where electron passed mu20i						
	2(1111201)	_	number of events v	number of events with muon from W (truth information)					
After p	reselection		Trigger level	ε (e25i)	$\varepsilon(e60)$	ε (mu20i)			
			Level 1	90.0±0.5%	80.8±0.5%	86.9±0.5%			
			Level 2	$85.8 {\pm} 0.6\%$	$51.5 \pm 0.8\%$	$82.2{\pm}0.6\%$			
		Eventfilter	$79.3{\pm}0.7\%$	$44.3 {\pm} 0.8\%$	79.9±0.6%				
After fin	ter final selection:		Trigger level	ε (e25i)	$\varepsilon(e60)$	ε (mu20i)			
			Level 1	91.1±0.6%	$78.2{\pm}0.5\%$	86.2±0.6%			
			Level 2	$87.1 {\pm} 0.7\%$	$48.7 \pm 1\%$	$81.5 {\pm} 0.7\%$			
			Eventfilter	$80.4{\pm}0.8\%$	41.4±1%	$79.5{\pm}0.7\%$			

Final selection cuts have no significant impact on Trigger efficiencies

Efficiencies of Trigger Items

c(a25i or a60)	_	number of events where electron passed e25i or e60		
8(6251 01 600)		number of events with lepton from W (truth information)		
c(a25i or mu20i)	_	number of events where lepton passed e25i or mu20i		
<i>E</i> (C251 01 III(201)		number of events with lepton from W (truth information)		
c(e25i or e60 or mu20i0)	_	number of events where lepton passed e25i or e60 or mu20i		
e(c251 of c00 of mu2010)		number of events with lepton from W (truth information)		

After preselection:	Trigger level	<i>ɛ</i> (e25i or e60)	ε (e25i or mu20i)	ε (e25i or e60 or mu20i)
	Level 1	45.4 ± 0.5 %	88.3±0.4%	92.4±0.3%
	Level 2	42.7 ± 0.5 %	83.4±0.4%	87.0±0.4%
	Eventfilter	39.6 ± 0.5 %	79.7±0.4%	82.7±0.4%
After final selection:	Trigger level	ε (e25iore60)	ε (e25iormu20i)	ε (e25iore60ormu20i)
	Level 1	45.9 ± 0.5 %	88.5±0.4%	91.9±0.4%
	Level 2	43.3 ± 0.5 %	84.1±0.5%	86.7±0.5%

Final selection cuts have no significant impact on Trigger efficiencies

41.1 ± 0.5 %

 $79.9 \pm 0.5\%$

Eventfilter

 $82.4 {\pm} 0.5\%$

Missing E_T trigger

Ricardo Goncalo

Works in release 12 only for L1

Had a very quick look at ttH semileptonic 5870 (positive lepton, 2500 events) and 5071 (negative lepton, 3500 events) AODs:

Events analyze	ed: 6000
Events presele	ected: 2878
Events presele	ected by:
electron pass	= 1812
muon pass	= 2301
jets pass	= 4253

Level	e25i	e60	mu20	xe100	All (no XE)	All (with XE)
L1	52%	67%	52%	23%	97%	98%
L2	44%	27%	45%		89%	92%
EF	41%	23%	43%		84%	88%

Jet Trigger

Fabrizio Parodi

	Fabrizio	Catrin
4j50	49%	49.0%
· 3j65	50%	50.3%
2j120	25%	24.99%
1j160	29%	29.4%
Lep	80%	80.5% (83.3% with e60)
Jet		64.1%
Lep+jet	93%	93.2% (93.5% with e60)

- Overlap in efficiencies for lepton and jet triggers
- Although single lepton trigger is more robust and less affected by systematics, summing up lepton & jet triggers more efficient

Summary

- Pre ttH CSC note written
- For final CSC note:
 - Move to release 13
 - Plots with reconstructed higgs mass plots for signal and background samples for:
 - checking eventual bias of online selection
 - Analysis dependence of selection thresholds
 - Include missing E_T trigger L1_xe100 in study
 - Look at jet trigger for combination with lepton trigger

UCL