

Egamma Performance

Helen Hayward University of Liverpool

Outline

- Calibration and performance of the electromagnetic calorimeter
- Reconstruction and ID efficiencies
 - Electrons
 - Photons
- J/Psi and Upsilon
- Example Expected Performance:
 - Higgs→eeee
 - Higgs⊸γγ

- Not covered:
 - Egamma Triggers
 - Conversions (see previous talk)
 - Bremstrahlung (see previous talk)
- Will try to highlight UK Contributions
 - (when I list names it doesn't necessarily mean they were the only person to work on a particular analysis !)

EM Calibration

- Corrections needed for energy deposited in:
 - Inner-detector, cryostat, cables
 - Escapes back of calorimeter
- Cells from the four layers are combined to form clusters.

$$E = s(\eta)[c(\eta) + w_0(\eta) \cdot E_{PS} + E_{strips} + E_{middle} + w_3(\eta) \cdot E_{back}]$$

- Weights are applied to correct for the energy losses providing optimum linearity and resolution.
- Plots for single particle MC
- Resolution drop due to increased material in front of calorimeter

Energy (GeV)

EM Calibration II

- **Resolution for electrons** and photons as a function of eta
- Linearity for electrons ullet
 - Deterioration in endcap due to absense of presampler, limited statistics
- Proof of pudding is with actual data
- **Combined Test Beam data** Helen Hayward, ATLAS

1/9/08

Single Particle MC ▲ 3x7 100GeV e △ 3x7 100GeV γ **Neso** 0.05¹ 0.05 0.02 0.0 1.5 0.5 2.5 1 2 m Single Particle MC ▲ hnl = 0.3 E 0.006 \Box hl = 2.0 0.004 mc 0.002 -0.002 -0.004 -0.006 -0.008 -0.01^L 100 200 300 400 500

 $\sigma_{\rm E}/{\rm E} = (10.1 \pm 0.4)\%/{\rm N}{\rm E} \oplus (0.2 \pm 0.1)\%$

Contributions to the σ_E/E **Detector Paper: CTB** results

- Fractional energy resolution, for a ۲ barrel Lar electromagnetic module i the CTB.
 - Electronic noise has been subtracted from the data.
 - The results shown are for upstream _ material of 2.4 X_0 , which is that expected in ATLAS at η =0.4.
- Linearity of response, for a barrel Lar electromagnetic module
 - at lηl =0.687
 - different amounts of material placed upstream of the active calorimeter.

0.05

 \triangle Data:

Position Resolution

- As well as knowing the energy, we also need to know the position of our egamma objects.
- Expected η-position resolution for photon showers with an energy of 100 GeV
- Expected precision on the θ angle of photons from H→γγ,

Offline reco: Guillaume Kirsch, IsEM: Maria Fiascaris

Electron reconstruction and identification efficiency at ATLAS

- Data driven method
- Early data (50 pb⁻¹) aim
- Evaluate efficiencies independently from MC
- Need a clean signature based on electrons
 - Misaligned samples (v12)
 - Z→ee
 - Filtered jet sample (pt >17 GeV)

Using custom NTuples produced by Ellie Dobson (Oxford) and Mike Flowerdew (Liverpool)

Offline reco: Guillaume Kirsch, IsEM: Maria Fiascaris One common method: Tag and Probe

- Tag Selection (N_1) :
 - First Electron
 - Triggers Event
 - Tight Offline cuts + Pt + eta
 - Second Electron
 - candidate in opposite hemisphere
 - + Pt + eta

Background

70

80

20000

18000

16000 14000

12000

10000

8000

6000

4000

2000

50

60

- Reconstruction Efficiency : LarCaloClus object reconstructed as Electron
- Identification Efficiency: Loose/Medium/Tight isEM?

8

Differential Efficiency I

•electron reconstruction efficiency and ID efficiencies (relative to electron container) calculated separately....and then multiplied together to give overall efficiency.

- Differential Efficiencies in Eta and Pt
- Luminosity: 50 pb⁻¹
- •These Plots:
 - •Medium IsEM
 - •Id Efficiency relative to electron container

Offline reco: Guillaume Kirsch, IsEM: Maria Fiascaris

Differential Efficiency (II)

•Overall Efficiency in bins of Eta for 25GeV < Pt < 40 GeV

Reconstruction Eff. * IsEM Eff

Isolation Studies (motivation SUSY)

- Calorimeter Isolation
 - "etcone20" ATLAS calorimeter isolation
- Track Isolation:

35 electron Et calo isolation [GeV] Oleg Brandt 30 25 20 E 15 E 10F MC1: SUSY SU2 -5 MC5: Z+b -10 MC6: tt -15 20 15 25 10 5 max_i{ $p_{i}^{track_{i}}$ }, i \in {tracks $\in \Delta R(e)$ } (after 3I req.) [GeV]

 $I_{0.2}^{\text{trk}} \equiv p_T^{\max}(\ell) \equiv \max_{i,j} \{ p_T^{\text{track}_i} | \text{track}_i \in \Delta R(\ell_j) \}$

• where
$$\ell = \mu, e$$
 $\Delta R = 0.2$

MC1: SUSY SU2

SU2 Pile Up

20

25

30

Isolation in Pile-Up Conditions

events

0.5

- Pile Up affects:
 - Track Isolation
 - **Calorimeter Isolation**
- Under Investigation

-5

0

5

10

maximal electron E, calo isolation (after 3I reg.) [GeV]

15

Helen Hayward, ATLAS-UK me

Oleg Brandt

2

2.5

η

1.5

1

Isolation Efficiencies

%

0.5

Photon ID: IsEM

1.2

1.1

0.9

0.8

0.7

0.6

0.5

- Shower shape variables:
 - Hadronic leakage
 - Transverse size in 2nd sampling
 - Transverse size in 1st sampling + search for second maximum (π 0 rejection)
- Efficiency Cuts in bins of eta and Et
- Average efficiency after iso cut (10^{33} pileup)
 - 82.0% (misaligned geometry)
 - 84.8% (nominal geometry)

Efficiency before isolation cut

200

nile0 misal0

160

180

Et (GeV)

(Yaquan Fang, wisconsin) (Hyeonjin Kim, University of Texas at Arlington) Log Likelihood and H Matrix: efficiency from $H \rightarrow \gamma \gamma$ sample

Non-Pointing Photons

Reco

0.5

HH

- GMSB SUSY can have a signature of a long lived neutralino decaying to a photon plus gravitino
 - Hence photon does not "point-back" to primary vertex
- Affects Reconstruction and Id Efficiencies
- (plots v12, GMSB MC)

Helen Hayward, ATLAS-UK meeting, Du χ_1^0 decay length Z(mm)

1000

1500

2000

weta2 cu

500

J/Psi and Upsilon

- Low energy resonances will be an important tool to study early data.
 - trigger performance
 - offline electron reconstruction
- With 100 pb⁻¹ Tight elec cuts
 - Approx 100,000 J/ ψ
 - Approx 30,000 Υ

- Signal and background samples available in early data
 - Drell-yan (full histogram)
 - Expected BG after offline selection (full circles)

H→γγ, H→eeee

- The performance of the reconstruction (inc. calibration).
 - Loose cuts for electron
 - Tight cuts for photons
- Photon directions are derived from calorimeter direction and primary vertex info
- (shaded area corresponds to events where at least one photon converted before 80cm) Helen Hayward, ATLAS-U

Summary and Conclusions

- UK people actively involved in a broad spectrum of EGAMMA activities.
 Important contributions to Detector Paper and CSC notes
- Systematic uncertainties to be quoted in Physics CSC notes for 0.1fb⁻¹:
- Efficiencies:
 - overall 1%
- Energy scale:
 - Additional comment: 0.1% is at the Z peak, global spectrum: 0.5%
 - Upsilon could give an additional constraint at $\sim 0.5\%$
- Resolution:
 - 20% (relative)
- Rejection:
 - Fake electron rates (when at the level of 10⁻³ or below):
 - known to 50% for 100 pb^{-1} overall and integrated over limited range of pT,