

# **Trilepton SUSY Studies**

# Tina Potter and Antonella De Santo RHUL 10/1/08 UK ATLAS, Durham



- Object definitions
- Exclusive trilepton study
- Inclusive trilepton study
- Lepton efficiencies and fake rates
- Outlook on data driven background estimation
- Summary

Studies performed in context of CSC notes 5 & 7

|                 | Muon                | Electron                 | Photon                   | Jet                      |
|-----------------|---------------------|--------------------------|--------------------------|--------------------------|
| Collection Key  | StacoMuonCollection | ElectronCollection       | PhotonCollection         | Cone4TowerParticleJets   |
| $p_T$ cut       | >10 GeV             | >10 GeV                  | >10 GeV                  | >10 GeV                  |
| $\eta$ cut      | $ \eta  < 2.5$      | $0 <  \eta  < 1.37$      | $ \eta  < 2.5$           | $ \eta $ <2.5            |
|                 |                     | or 1.52 $<  \eta  < 2.5$ |                          |                          |
| Calorimeter     | E  < 10  GeV        | E  < 10  GeV             | E  < 10  GeV             | -                        |
| Isolation       | in $\Delta R = 0.2$ | in $\Delta R = 0.2$      | in $\Delta R = 0.2$      | -                        |
| IsEM flag       | -                   | 0x3FF                    | 0x7FF                    | -                        |
| Other           | bestMatch           | Egamma author            |                          |                          |
|                 | combinedMuon        | only                     | -                        | -                        |
|                 | HighPt algorithm    |                          |                          |                          |
| Overlap Removal | none                | none                     | ele-pho $\Delta R > 0.2$ | ele-jet $\Delta R > 0.2$ |

### **Overlap removal**

if  $\Delta R < 0.2$  between ele-jets, electron has priority

if  $0.2 < \Delta R < 0.4$  between ele-jets, jet has priority if  $\Delta R < 0.4$  between muon-jets, jet has priority

if SFOS pair found with  $M_{sFOS}$  < 20 GeV, pair is removed from event likely to be from conversions

Object definitions and overlap removal used is in agreement with SUSY CSC 5 & 7 notes

#### SU2

 $m_0 = 3550 \text{GeV}, m_{1/2} = 300 \text{GeV}, A_0 = 0, \tan\beta = 10, \mu > 0$ 

#### Mass spectrum of sparticles at the SU2 point



Heavy scalars are too massive so no decays through intermediate sleptons

| Process | Generator | σ <sub>NLO</sub> [pb] | # events /10 fb $^{-1}$ | Sample Luminosity [fb <sup>-1</sup> ] |
|---------|-----------|-----------------------|-------------------------|---------------------------------------|
| SU2     | Herwig    | 6.1                   | 61000                   | 8.2                                   |
| SU3     | Herwig    | 23.2                  | 232000                  | 20.4                                  |
| SU4     | Herwig    | 327.5                 | 3275000                 | 0.6                                   |
| tī      | MC@NLO    | 461.0                 | 4610000                 | 0.9                                   |
| ZZ      | Herwig    | 3.9                   | 39000                   | 12.7                                  |
| ZW      | Herwig    | 16.1                  | 161000                  | 3.0                                   |
| WW      | Herwig    | 40.9                  | 409000                  | 1.2                                   |
| Ζγ      | Pythia    | 3.4                   | 34000                   | 3.0                                   |
| Zb      | AcerMC    | 226.2                 | 2262000                 | 0.8                                   |

### Normalised to10 fb<sup>-1</sup>

Direct chargino-neutralino production and decay to a trilepton final state



| Production                                 | σ [fb] | # events /10 fb <sup><math>-1</math></sup> | # 31 events /10 fb <sup>-1</sup> |
|--------------------------------------------|--------|--------------------------------------------|----------------------------------|
| $	ilde{\chi}_1^{\pm}	ilde{\chi}_2^0$       | 1138.0 | 11380                                      | 175                              |
| $	ilde{\chi}_1^{\pm}	ilde{\chi}_3^0$       | 679.3  | 6793                                       | 105                              |
| $	ilde{\chi}_1^\pm 	ilde{\chi}_4^0$        | 51.4   | 514                                        | 6                                |
| $	ilde{\chi}_2^\pm 	ilde{\chi}_2^0$        | 58.5   | 585                                        | 7                                |
| $	ilde{\chi}^{\pm}_{2}	ilde{\chi}^{0}_{3}$ | 61.6   | 616                                        | 7                                |
| $	ilde{\chi}_2^\pm 	ilde{\chi}_4^0$        | 310.3  | 3103                                       | 26                               |
| TOTAL                                      |        | 22991                                      | 326                              |





- 1. 2 SFOS leptons : Same Flavour Opposite Sign leptons ( $e^+e^-$ ,  $\mu^+\mu^-$ ) *Low mass pairs (M*<sub>SFOS</sub><20 GeV) *already removed from event*
- 2.  $N_l >= 3$ : Number of leptons ( $l = e, \mu, \neq \tau$ )
- 3. Track Isolation : in  $\Delta R(0.2)$ ,  $p_T^{max} < 1$  GeV for muons, < 2 GeV for electrons.
- 4.  $81.2 \text{ GeV} < M_{SFOS} < 101.2 \text{ GeV}$ : Invariant mass of any SFOS leptons, remove Z window
- 5.  $\not\!\!E_T > 30 \text{ GeV}$  : Missing transverse Energy
- 6. Jet Veto : no jets with  $p_T > 20$  GeV.



Normalised to10 fb<sup>-1</sup>

**Event Selection II** 









Normalised to10 fb<sup>-1</sup>

Signal Significance

#### Normalised to10 fb<sup>-1</sup>

| Kinematic Cut      | No Cuts | $N_L >= 2$ | SFOS   | $N_L >= 3$ | TrackIsol | ZWindow | Ę <sub>T</sub> | JetVeto |
|--------------------|---------|------------|--------|------------|-----------|---------|----------------|---------|
| Sample             |         |            |        |            |           |         |                |         |
| SU2 Signal         | 370     | 221        | 143    | 67         | 61        | 55      | 43             | 23      |
| SU2 Bckgnd         | 59772   | 1828       | 1092   | 191        | 149       | 119     | 111            | 4       |
| tī                 | 4516201 | 240494     | 106779 | 2882       | 650       | 520     | 488            | 43      |
| ZZ                 | 38153   | 10400      | 9971   | 579        | 475       | 57      | 13             | 6       |
| ZW                 | 157000  | 17255      | 14502  | 1913       | 1685      | 322     | 218            | 154     |
| WW                 | 400174  | 22688      | 10678  | 25         | 8         | 8       | 8              | 8       |
| Z+Photon           | 32832   | 7184       | 6970   | 91         | 27        | 7       | 3              | 0       |
| Zb                 | 1591157 | 573601     | 559237 | 6523       | 2409      | 386     | 0              | 0       |
| Case A S/sqrt(S+B) | 23.07   | 2.19       | 1.47   | 2.33       | 2.84      | 4.52    | 5.18           | 1.74    |
| Case B S/sqrt(S+B) | 0.14    | 0.24       | 0.17   | 0.61       | 0.84      | 1.49    | 1.54           | 1.51    |

#### N-1 table

| S/sqrt(S+B)            | Case A | Case B |
|------------------------|--------|--------|
| With All Cuts          | 1.74   | 1.51   |
| Remove SFOS            | 1.79   | 1.49   |
| Remove 3leps           | 1.74   | 0.55   |
| Remove Track Isolation | 1.39   | 1.16   |
| Remove ZWindow         | 0.97   | 0.85   |
| Remove $E_T$           | 1.63   | 1.42   |

#### Case A : SUSY Bckgnd counted as SUSY Signal

(hard to distinguish experimentally) S/sqrt(S+B) = 1.74 $5\sigma$  discovery after 90 fb<sup>-1</sup> of data

#### Case B : SUSY Bckgnd = 0

(only direct gaugino production) \_\_\_\_\_ S/sqrt(S+B) = 1.51 $5\sigma$  discovery after 120 fb<sup>-1</sup> of data









- 1.  $N_l >= 3$ : Number of leptons ( $1 = e, \mu, \neq \tau$ )
- 2. At least 1 jet  $p_T^{jet1} > 200 \text{ GeV}$  : transverse momentum of leading jet



#### **Event Selection**

### Normalised to1 fb<sup>-1</sup>

Simple and powerful analysis



| Kinematic Cut     | No Cuts | N <sub>l</sub> | $p_T^{jets}$ | Ī  |
|-------------------|---------|----------------|--------------|----|
| Sample            |         |                |              | I  |
| SU2               | 6014    | 30             | 11           | Ī  |
| SU3               | 22949   | 117            | 79           | Ī  |
| SU4               | 322826  | 1045           | 254          | I  |
| tī                | 451620  | 455            | 11           | Ī  |
| ZZ                | 3815    | 59             | 0            | Ī  |
| ZW                | 15700   | 193            | 1            | I  |
| WW                | 40017   | 3              | 0            | Ī  |
| Z+Photon          | 3283    | 9              | 0            | Į, |
| Zb                | 159116  | 656            | 0            |    |
| SU2 : S/sqrt(S+B) | 7.3     | 0.8            | 2.3          |    |
| SU3 : S/sqrt(S+B) | 27.5    | 3.0            | 8.3          |    |
| SU4 : S/sqrt(S+B) | 323.4   | 21.2           | 15.6         | 🔸  |

**Signal Significance** 

### Normalised to1 fb<sup>-1</sup>

**SU2** S/sqrt(S+B) = 2.3 5σ discovery after 5 fb<sup>-1</sup> of data

SU3 S/sqrt(S+B) = 8.3  $5\sigma$  discovery after 400 pb<sup>-1</sup> of data

SU4 S/sqrt(S+B) = 15.6  $5\sigma$  discovery after 150 pb<sup>-1</sup> of data

Possible combinations of jet  $p_{T}$ ,  $E_{t}^{miss}$  and track isolation cuts

|       | $p_T^{jet  1} > 200 \text{ GeV}$ | $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Track Isolation | 5   | $S/\sqrt{S+I}$ | 3    |
|-------|----------------------------------|--------------------------------------------------------------------------------|-----------------|-----|----------------|------|
|       |                                  |                                                                                |                 | SU2 | SU3            | SU4  |
| Set 1 | $\checkmark$                     | ×                                                                              | X               | 2.3 | 8.3            | 15.6 |
| Set 2 | ×                                | ~                                                                              | X               | 1.6 | 7.5            | 17.7 |
| Set 3 | ×                                | ×                                                                              | ✓               | 1.0 | 3.6            | 19.7 |
| Set 4 | ×                                | ~                                                                              | ✓               | 1.7 | 7.0            | 14.5 |
| Set 5 | ✓                                | ✓                                                                              | X               | 2.2 | 7.6            | 11.6 |
| Set 6 | ✓                                | X                                                                              | ✓               | 2.3 | 7.6            | 13.2 |
| Set 7 | ✓                                | ~                                                                              | ~               | 1.9 | 6.7            | 9.5  |



Performance



|                        | Efficiency %   |                  | Fake Rate       | $e(x10^{-3})$   |
|------------------------|----------------|------------------|-----------------|-----------------|
|                        | Electrons      | Muons            | Electrons       | Muons           |
| II : From Heavy Decays |                |                  |                 |                 |
| SU2                    | 68.1±0.5       | 76.7±0.5         | $2.48 \pm 0.11$ | $0.56 \pm 0.05$ |
| SU3                    | $70.5 \pm 0.2$ | $71.8 {\pm} 0.1$ | $2.54 \pm 0.03$ | $0.30 \pm 0.01$ |
| SU4                    | 68.4±0.2       | 72.1±0.2         | $3.48 \pm 0.05$ | $0.95 \pm 0.03$ |
| tī                     | 69.8±0.1       | $74.2 \pm 0.1$   | $4.92 \pm 0.04$ | $1.66 \pm 0.02$ |



**Electrons** 



Muons

# **Outlook on Data Driven Background Estimations**

Most dangerous backgrounds are ttbar and ZW

#### ttbar

use lepton flavour and sign combinations of trilepton events.

| SUSY incompatible<br>no SFOS pair | SUSY compatible<br>SFOS pair |
|-----------------------------------|------------------------------|
| e⁺e⁺µ⁺<br>e⁺e⁺µ⁻<br>e⁻e⁻u⁺        | e⁺e⁻µ⁺                       |
| e-e-h-                            | µ⁺µ⁻e⁺<br>u⁺u⁻e⁻             |
| µ⁺µ⁺e⁺<br>µ⁺µ⁺e⁻<br>µ⁻µ⁻e⁺        | e⁺e⁻e⁺<br>e⁺e⁻e⁻<br>u⁺u⁻u⁺   |
| e⁺e⁺e⁺<br>e⁻e⁻e⁻<br>μ⁺μ⁺μ⁺        | µ⁺µ-µ-                       |

The number of non-compatible combinations can be used to estimate the numbers of SUSY compatible combinations and thus the ttbar background to SUSY trilepton signal ZW

measure ZZ cross-section



Ideas

replace a lepton with a neutrino and correct for differences in cross-sections.

### Exclusive trilepton signal

Stringent cuts on lepton track isolation and a harsh jet veto
S/sqrt(S+B)= 1.74 after 10 fb<sup>-1</sup> of data Case A, direct gaugino production + SUSY bckgnd
= 1.51 after 10 fb<sup>-1</sup> of data Case B, direct gaugino production only
5σ discovery after 90 fb<sup>-1</sup> for Case A, 120 fb<sup>-1</sup> for Case B.

### Inclusive trilepton signal

Simple and powerful analysis, only require 3 leptons and one high  $p_{\tau}$  jet.

**SU2**: S/sqrt(S+B) = 2.3 for 1 fb<sup>-1</sup> of data. 5 $\sigma$  discovery after 5 fb<sup>-1</sup> of data

**SU3**: S/sqrt(S+B) = 8.3 for 1 fb<sup>-1</sup> of data. 5 $\sigma$  discovery after 400 pb<sup>-1</sup> of data

**SU4 :** S/sqrt(S+B) = 15.6 for 1 fb<sup>-1</sup> of data. 5 $\sigma$  discovery after 150 pb<sup>-1</sup> of data

Invariant mass distribution of flavor subtracted M<sub>SFOS</sub> yields mass difference of lightest two neutralinos. The entire SUSY mass spectrum can be obtained from further measurements of jet-lepton invariant mass plots.

ZW and ttbar are the most dangerous backgrounds. Controlled by lepton track isolation and Z mass window removal but events still remain.

Background estimations not yet performed for trilepton analysis but ideas are already in place