Understanding electron trigger performance using Z→ee

Mike Flowerdew (Liverpool) with: Joost Vossebeld (Liverpool), Ellie Dobson and Tony Weidberg (Oxford), and others

> ATLAS-UK meeting Durham 09 January 2008

Triggering electrons in ATLAS

Level 1

- Calo only
- Loose E_T cut
- (Isolation)

Level 2

- EM E_T
- Shower shape
- Track/cluster match

Event Filter

- EM E_T
- Adaptable selection (like IsEM)
 - Loose
 - Medium
 - (Tight)

Level 1

- EM E_T
- (Lateral isolation)
- (Hadronic leakage)
- (Hadronic lateral isolation)

Level 2 – Cluster

- \blacksquare EM E_T
- Hadronic leakage

$$R_{shape} = E_{37}/E_{77}$$

 $E_{\text{Ratio}} = (E_1 - E_2) / (E_1 + E_2)$

Level 2 – Cluster + Track

- \blacksquare Track p_T
- 🗖 Δη & Δφ
- $\blacksquare (E_{T}/p_{T})$

Event Filter

- \blacksquare EM E_T
- **Loose** selection:
 - Hadronic leakage

$$\mathbf{R}_{\eta 33} = \mathbf{E}_{33} / \mathbf{E}_{77}$$

$$\mathbf{R}_{\eta 37} = \mathbf{E}_{37}^{37} / \mathbf{E}_{77}^{37}$$

- Cluster width & energy
- Medium selection adds:
 - Shower shape in strips
 - \overline{N}_{hits} (pixel & SCT)
 - Transverse impact parameter
- (Tight selection adds:)
 - (TRT high-threshold hits)
 - $(\Delta \eta \& \Delta \phi)$
 - (E/p)

For more details (and cuts) see TrigHLTelectronHypo in the TWiki

Triggers and rates for early running

NpXXi Number of elements Type (e=electron) ET cut at EF isolation/other info

Low thresholds/loose selections for 10³¹ cm⁻²s⁻¹ ~40 Hz EF bandwidth

Signatura	LVL1	EF	LVL1	Pre-	EF	Mativatian
Signature	item	selection	Rate	scale Rate		
2e5	2EM3	medium	6.5 kHz	1	6 Hz	$J/\Psi \rightarrow ee, Y \rightarrow ee$, Drell-Yan production
2g10 🔂	2EM7	loose	0.5 kHz	1	0.1 Hz	di-photon cross-section
e10 🔶 🗾	EM7	medium	5.0 kHz	1	21 Hz	e^{\pm} from b,c decays, E/p studies
2e10 🔶 👼	2EM7	loose	0.5 kHz	1	$0.4\pm0.2~\text{Hz}$	$Z \rightarrow e^+ e^-$
g20 🛡	EM18	loose	0.3 kHz	1	$5.4\pm0.2~\text{Hz}$	direct photon production, jet calibration
rig						using γ -jet events, high- p_T physics
e20 🔶 🙀	EM18	loose	0.3 kHz	1	$4.3\pm0.2~\text{Hz}$	high- p_T physics, $Z \rightarrow ee, W \rightarrow ev$
e20_passL2	EM18	loose	0.3 kHz	1	10 Hz	commissioning trigger for problems at LVL2
e20_passEF	EM18	loose	0.3 kHz	1	12 Hz	commissioning trigger for problems at EF
em105_passHLT	EM100		1.0 Hz	1	$1.0\pm0.1~\mathrm{Hz}$	New physics, check for possible problems

Table adapted from EG11 note draft (overall ey trigger strategy)

Not shown:

- Prescaled triggers bypassing HLT
- Built-in redundancy (eg e25)

Measuring trigger efficiencies using $Z \rightarrow ee$

- Tag selection: • Tight offline
 - $cuts + E_{T}$
 - Triggers event

Probe preselection: • Offline cuts $+ E_T$

Event selection:

- e⁺e⁻ pair
- $\sim 70 < M_{ee} < 100 \text{ GeV}$
- "True" efficiency also needs 2 electrons

$$\varepsilon = \frac{N_{\text{successful probes}}}{N_{\text{preselected pairs}}} = \frac{N_{\text{p}}}{N_{\text{T}}} = \frac{N_{1p} + 2N_{2p}}{N_{1f} + N_{1p} + 2N_{2p}}$$

 $N_{ip/f} =$ # events with *i* probes, passing/failing trigger

$$\sigma_{\varepsilon} = \sqrt{\frac{1}{N_{\mathrm{T}}^2} \left[(1 - 2\varepsilon) N_{\mathrm{p}} + \varepsilon^2 N_{\mathrm{T}} + (1 - \varepsilon)^2 \cdot 2N_{2p} \right]}$$

Signal extraction:

- Simple counting (this study)
- Signal+background fit, background subtraction, ... (real life)

	Sample type	Number	Reco	Simul	σ (Filtered)	# events
Results are	$Z \rightarrow ee$	5144	12.0.6.1	12.0.31	1432 pb	430k
v13 unless	$Z \rightarrow ee$	5144	13.0.30.1/2	12.0.31	1432 pb	260k
otherwise	J1	5010	12.0.6.1	12.0.31	1.4x10 ⁹ pb	387k
stated	J2	5011	12.0.6.1	12.0.31	9.3x10 ⁷ pb	360k
	J3	5012	12.0.6.1	12.0.31	5.9x10 ⁶ pb	365k
	.14	5013	12061	12031	3 1x10 ⁵ nh	369k

Problems in release 12

Problems can be found even before data-taking

Software bug in IDSCAN and confirmation of fix

Problem with Level 1 lateral hadronic isolation:

- Characterised using tag & probe
 Requirement now loosened

Treatment of backgrounds (v12)

Main background is from QCD dijets faking two electrons

- MC statistics for this will be small compared to data
- Possible solution: Parameterise P(jet—electron) and use this to boost MC statistics
 - Parameters: jet E_{T} and flavour
- Produce "Fake rate" and correction for jet/EM scale difference

$$\begin{aligned} EventWeight &= P(jet1 \rightarrow tag) * P(jet2 \rightarrow probe) \\ &+ P(jet1 \rightarrow probe) * P(jet2 \rightarrow tag) \\ &- P(jet1 \rightarrow tag) * P(jet2 \rightarrow tag) \end{aligned}$$

Treatment of backgrounds (v12) E. Dobson

Background levels can be estimated and subtracted using fits to the data

- Sideband subtraction assumes Drell-Yan is "background"
 - Alternatives exist in data that are difficult to implement in MC
- Change in measured efficiency is only significant at Level 1
 - Needs further study

ϵ (Signal) – ϵ (with BG subtraction) [%]						
Trigger Level	wrt loose	wrt medium	wrt tight			
LVL1	-0.85	-0.70	0.53			
LVL2	0.08	0.01	0.03			
EF	${\sim}0$	${\sim}0$	${\sim}0$			
Whole trigger	-0.69	-0.60	0.53			

Results that follow are "signal only", and just count the events in range

8

Trigger element: e10 For trigger signature: 2e10 EF selection: loose Luminosity: 10³¹ cm⁻²s⁻¹ Offline normalisation: ElectronMedium

9

Trigger element: e10_tight For trigger signature: e10 EF selection: medium Luminosity: 10³¹ cm⁻²s⁻¹ Offline normalisation: ElectronMedium

Trigger element: e20 For trigger signature: e20 EF selection: loose Luminosity: 10³¹ cm⁻²s⁻¹ Offline normalisation: ElectronMedium

Trigger element: e22i For trigger signature: e22i (ex- e25i) EF selection: loose Luminosity: 10³³ cm⁻²s⁻¹ Offline normalisation: ElectronMedium

Single electron efficiencies

NpXXi Number of elements Type (e=electron) ET cut at EF isolation/other info

Offline E_{T} cut = EF threshold + 5 GeV

NB: For multi-electron items (eg e10), tag uses single-electron equivalent (eg e10_tight)

Trigger Item	Efficiency (%) wrt			ϵ _Reco – ϵ _True	Lumi	Trigger
	loose	medium	tight	(%) for medium	cm-2s-1	type
e10	97.07 (5)	98.56 (4)	99.58 (2)	0.09	10^31	multi-e
e10_tight	86.8 (1)	98.06 (4)	99.15 (3)	0.13	10^31	single-e
e15_loose	97.11 (5)	98.58 (4)	99.55 (2)	0.06	10^31	multi-e
e15	87.3 (1)	98.13 (4)	99.15 (3)	0.08	10^31/10^32	single-e
e20	96.98 (5)	98.48 (4)	99.41 (3)	-0.03	10^31	single-e
e20_tight	86.4 (1)	96.63 (6)	97.66 (6)	0.02	10^32	single-e
e22i	90.76 (9)	93.83 (8)	94.91 (8)	-0.06	10^33	single-e
e25	97.10 (6)	98.53 (4)	99.40 (3)	-0.09	10^31	backup
e25_tight	87.1 (1)	96.82 (6)	97.80 (6)	-0.04	10^32	backup

Errors are for 180 pb⁻¹ of MC "data"

Reco-Truth discrepancy generally < 0.1%
Approx. equal to MC statistical error

12

E. Dobson

Events with jets in have ~2% lower trigger efficiencies than the inclusive channel

- Results for e25i in v12
- ALPGEN datasets 8130-5 are used
- parton has $p_T > 20 \text{ GeV}$
 - Adds to calorimeter activity
 - Events have a different kinematical distribution

See M. Fiascaris talk tomorrow for more

ϵ (Z+Jets) – ϵ (inclusive)

Level	Loose	Medium	Tight
LVL 1	-1.46%	-1.22%	-1.21%
LVL 2	-0.88%	-0.35%	-1.39%
EF	-0.61%	-0.52%	-0.41%
Whole trigger	-2.66%	-1.94%	-1.92%

13

Summary

Trigger efficiencies can be obtained from ATLAS data in the very early stages of running

- $\sim 0.2\%$ statistical error with just 50pb⁻¹ (if $\epsilon \sim 0.9$)
 - $\sim 1\%$ at 55 hours after turn-on??
- Systematic uncertainties will quickly become important

Parts of this study are entering CSC notes:

- v13 results into EG-11 (overall eγ strategy)
- v12 results into Inclusive W/Z cross section note (Talk tomorrow)
- v12 results in W/Z+Jets note (Talk tomorrow)

Tag and Probe is now quite a popular topic

- Many people working on trigger performance
- Offline efficiency measurement (Oxford) (e performace talk)
- Extensions to BSM physics (next talk!)