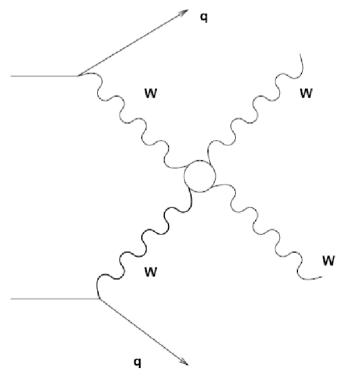
# WW Scattering

Jon Butterworth, Adam Davison, Erkcan Ozcan, Peter Sherwood - UCL Sarah Allwood-Spiers - Glasgow

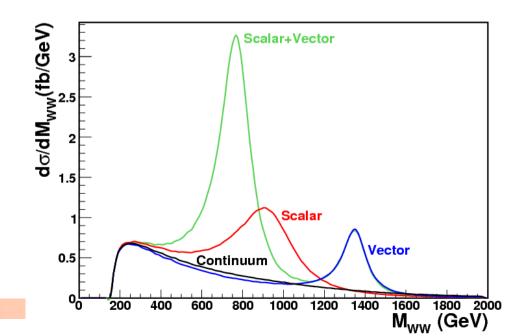

Atlas UK 2008

10/01/08



# Vector Boson Scattering in 60 Seconds

- SM cross-section violates unitarity at ~1TeV
- Extra Higgs diagrams can save you
- Or something else
  - More extra particles
  - Weirder things...
  - Fairly model independent
  - Interesting even with light Higgs




# Experimental Signature

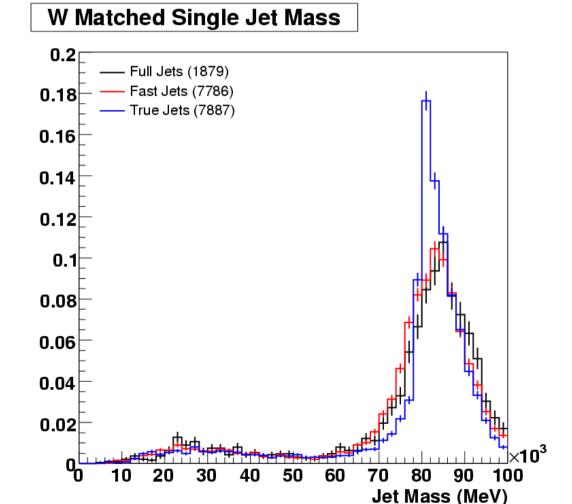
- Can study ZZ, WZ or WW
- UCL working on WW in semi-leptonic mode
  - 1 highly boosted hadronic W (1 or 2 central jets)
  - 1 leptonic W (1 isolated lepton and missing E<sub>t</sub>)
  - 2 "tag" jets in the forward region
- Reach is new particles around 500GeV 1TeV
- W+jets and tt are the main backgrounds

# Can Study

- Cross-section (starting with upper limit)
- Invariant mass distribution for resonances
- Eventually even spin of resonance



#### Cuts in Brief


- Hadronic W Candidate (more later)  $p_t > 200 \text{GeV}$
- Leptonic W Candidate  $p_t > 200 \text{GeV}$
- Both central  $(|\eta| < 2)$
- 1 forward and 1 backward tag jet
- Top-veto
- Central jet veto

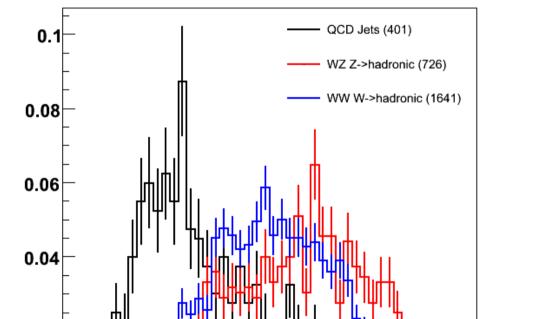
#### Hadronic W Candidate

- Most challenging part of analysis
- W is often highly boosted, decays as 1 jet
- Can't use dijet mass window but still need to be able to identify W's vs much more prevalent QCD jets ...
- For lower pt, still fall back to "classic" 2 jet scenario

# Single Jet Mass

- First weapon is to measure mass of the single jet
- Analogous to dijet mass
- Can apply window




### YSplitter

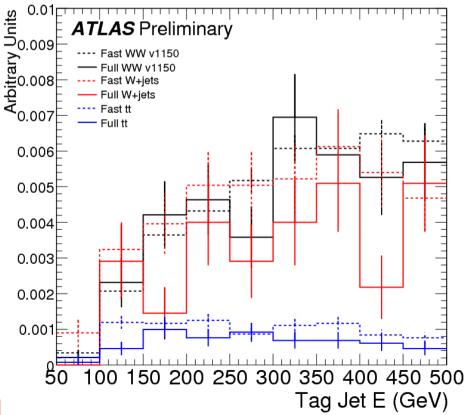
- Try to figure out if high mass is due to genuine hard splitting or just sum of many small masses
- Our jet of choice is Kt 0.6
- Take clustered Kt jet and go backwards
- Kt distance of final splitting gives y-scale
  - Scale at which jet can be resolved into two subjets

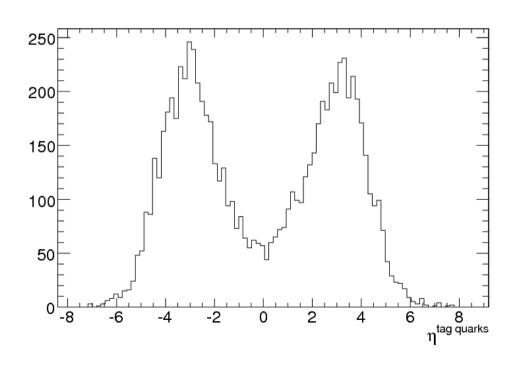
# More YSplitter

0.02

• Factor of 2-3 better than single jet mass alone in signal-to-background ratio

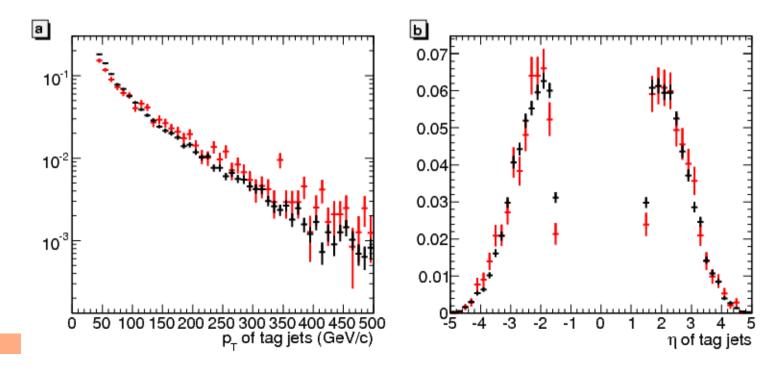



50


Y Scale of Jets w/ Mass Cut at 60GeV

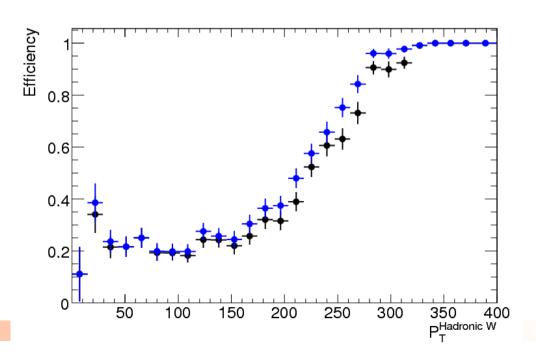
Y Scale (MeV)

#### Forward Jets


- letal > 2 and pt > 20GeV and  $E_{highest}$  > 300GeV
- Still optimising, may go for delta eta in the end

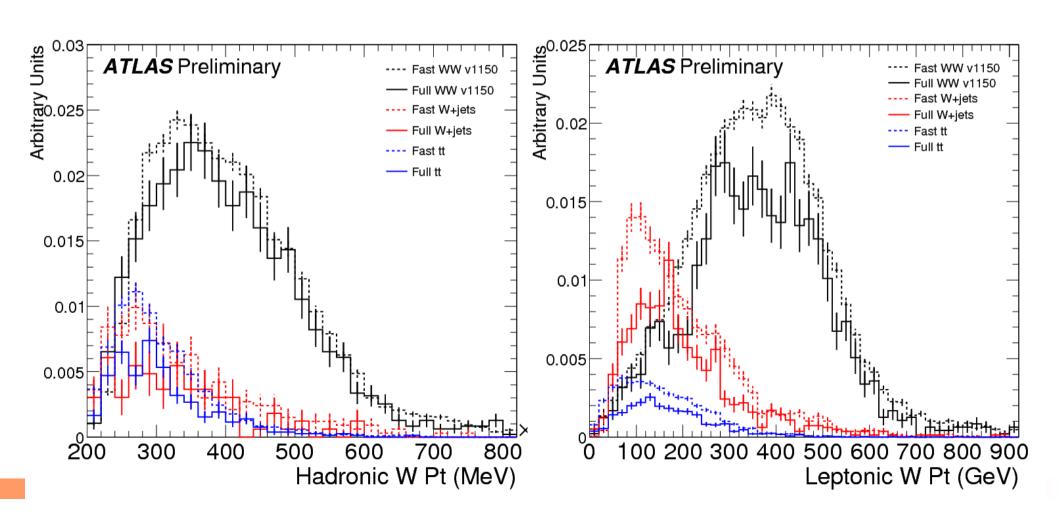





#### Monte Carlo Studies

- Various studies carried out
- For example, comparison of Alpgen and Madgraph for W+jets background




# Trigger

- Not particularly challenging for us
- Can take Lepton OR xEt OR Jet
- Well above thresholds for all but jets
- End up at >99%
- Black is jet160
- Blue jet160 || 2jet120



# Working with Atlfast

Only problem is lack of lepton efficiencies



#### Grid

- Same as everyone else
- Managed to do majority of our work on the grid
  - Used both GANGA and pathena

# Sample of (Preliminary) Results

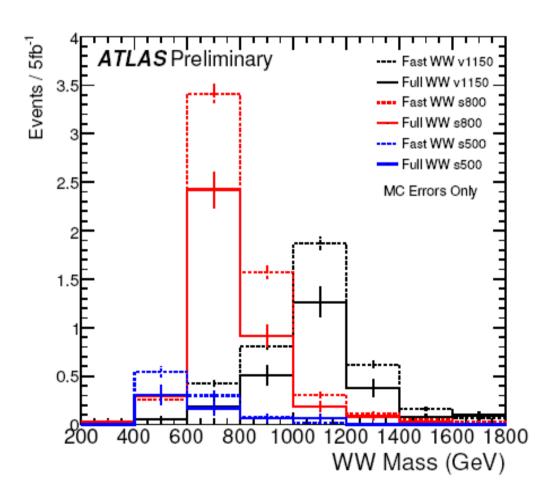

| Cut                            | Reconstruction       | Trigger        | Signal | $t\bar{t}$  | W + Jets | Sig/B |
|--------------------------------|----------------------|----------------|--------|-------------|----------|-------|
|                                | Efficiency (%)       | Efficiency (%) | σ (fb) | σ (fb)      | σ (fb)   |       |
| Starting sample                | _                    | _              |        |             |          |       |
| generated                      |                      |                | (28)   | 249000      | 37000    |       |
| $\equiv 1$ Hadronic W          | $28.4 \pm 0.5$ ( 32) |                | (9.0)  | 3100 (3700) | (644)    |       |
| $\equiv 1 \text{ Leptonic } W$ | 54 ± 1 (73)          |                | (6.6)  | 1400 (1700) | (294)    |       |
| $p_T$ (Had. $W$ ) > 200 GeV    | $99.9 \pm 0.1 (100)$ |                | (6.6)  | 1300 (1700) | (290)    |       |
| $ \eta $ (Had. $W$ ) < 2       | $96.3 \pm 0.5 (96)$  |                | (6.3)  | 1200 (1500) | (220)    |       |
| $p_T$ (Lep. $W$ ) > 200 GeV    | 92 ± 1 ( 92)         |                | (5.8)  | 400 (600)   | (120)    |       |
| $ \eta $ (Lep. $W$ ) < 2       | 96 ± 1 ( 95)         |                | (5.5)  | 400 (500)   | (86)     |       |
| $\equiv 2 \text{ tag jets}$    | $45 \pm 1  (51)$     |                | (2.8)  | 20 (100)    | (25)     |       |
| $\equiv 0$ top candidates      | 49 ± 2 ( 41)         | $99 \pm 1$     | (1.2)  | < 20 (< 10) | (6.3)    |       |

Table 16: Efficiencies of the cuts for the 800 GeV resonant  $qqWW \rightarrow qqlvqq$  sample. The trigger efficiency column shows the efficiency of mu20i || e25i || jet160 signatures on the sample after each of the cuts have been consecutively applied.

Uh oh...

### An Example Invariant Mass Spectrum

- Rather unoptimised
- Single Jet mode only (not good for 500GeV)
- Event counts low



#### Status of CSC Note

- Collaborating with WZ analysis at Montreal
- Need to do some optimization before it's final
- But unless we live in a model with a very high WW scattering cross-section then measurement probably not possible with CSC lumi (< 5fb<sup>-1</sup>)
- Early data will realistically be used for calibration and background study, especially single jet mass

### What's Going On?

- Trying to finish CSC note
- Working on analysis software
  - Was EventView this time
  - Still evaluating what post-CSC analysis will use
- Working closely with Jet performance group
  - Gradually working YSplitter upstream
  - By release 14, might be getting there

### Summary

- WW scattering is interesting
- CSC note is drafted
- Now in optimization/editing phase
- Will have something done by the CSC deadline
- Now looking toward post-CSC work
- YSplitter hopefully fully integrated by release 14

#### Veto

- Top Veto
  - Reco W candidates with any jet
  - Do leptonic and hadronic
  - Window is 130-240GeV
- Central Jet Veto
  - No jets with pt > 50GeV in letal < 2
  - Obviously except for W candidate jet

#### Had W Cuts

- Y window is 35-100 GeV
- Mass window is centred at 82.8 GeV, allow 14.4
  GeV each side (2 sigma)