

B meson studies - from commissioning to new physics effects.

R Jones for A. Dewhurst, Lancaster University

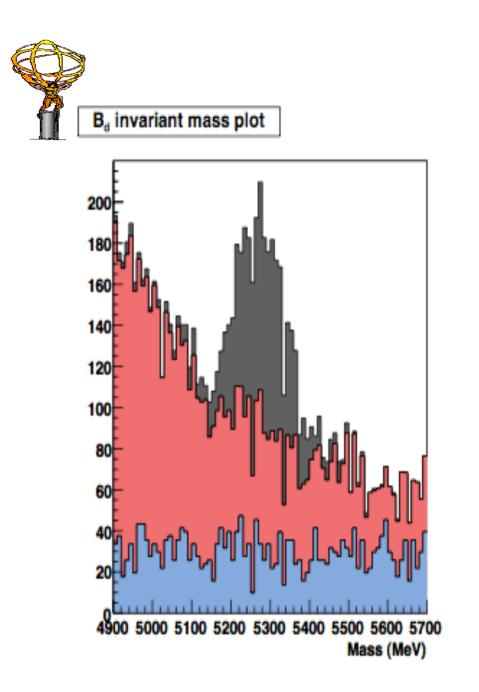
- Early ATLAS measurements of lifetime and mass for
 - $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+ K^-)$ and
 - $B_d \rightarrow J/\psi(\mu^+\mu^-) K^{0*}(K^+\pi^-)$ decays
 - Stringent test of the alignment, magnetic field map and tracking
- Advanced studies of lifetime + lifetime difference in $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+ K^-)$
 - Go beyond results from current experiments
- Full parameter fit including CP violating phase
 - probe for new physics with high statistics

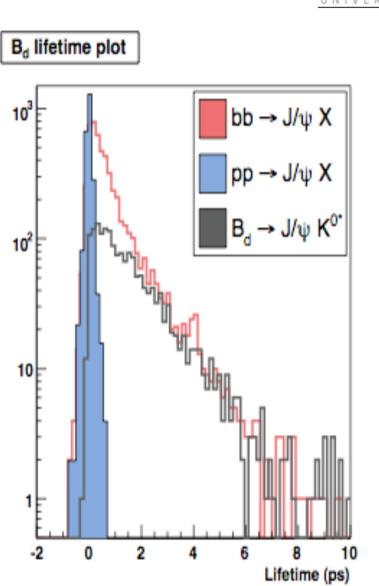
Reconstruction method

Reconstruct $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+ K^-)$, $B_d \rightarrow J/\psi(\mu^+\mu^-) K^{0*}(K^+ \pi^-)$ decays in several stages.

- Pairs of muons will be fitted to a vertex to make J/ψ candidates which will have to pass various cuts.
- Pairs of tracks fitted to make ϕ or K^{0*} candidates.
- B_s candidate vertices formed from J/ ψ and K^{0*} candidates. Best candidate per event selected (based on χ^2 per degree of freedom)
- Note we use, vertex, direction and mass constrained fits
- ✓ Note, light cuts but *no* lifetime cuts at this stage

Available Statistics

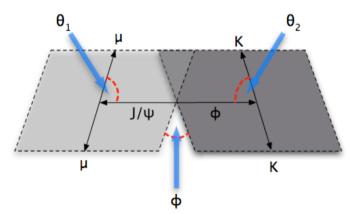

Because of the di-muon trigger and reconstruction method, the main types of background will come from events with $J/\psi \rightarrow \mu^+\mu^-$ in them. The table shows the number of candidates with a mass between 5 and 5.75 GeV for 100pb⁻¹


Channel	Signal	Background 1 pp→J/ψX	Background 2 bb→J/ψX
$B_d \rightarrow J/\psi(\mu^+\mu^-) \ K^{0^*}(K^+ \pi^-)$	13 890	19 500	54 500
$B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+ K^-)$	2 232	33 600	27 000

Simultaneous Mass & Lifetime fit

LANCASTE

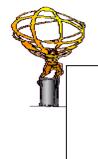
- At low luminosity it will be possible to use relatively loose cuts when selecting the B candidates.
 - This allows a sensitive test of detector unbiased by lifetime
 - Allow a relatively large number of background events → simultaneous fit to mass and lifetime to extract the physics
- For the B_d decay with 10pb⁻¹ integrated luminosity:
 - Fraction of signal events in fit: 16%
 - Uncertainty in lifetime measurement: 5%
 - Mass uncertainty 4MeV
 - Good for alignment checks, improving the world knowledge beyond 100pb⁻¹
- For the B_s decay with 100pb⁻¹ integrated luminosity:
 - Fraction of signal events in fit: 1.8%
 - Uncertainty in lifetime measurement: 11%
 - Improving the world knowledge beyond 100pb⁻¹ (but see later)



Measured variables:

three decay angles B_s proper decay time Tag decision

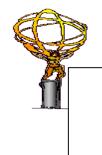
8 Theory parameters to fit:


4 parameters of 3 complex helicity functions: $|A_{\perp}|$, $|A_{\parallel}|$, δ_{\perp} , δ_{\parallel} 4 parameters of B_s system: width difference $\Delta\Gamma_s$, mean width Γ_s , oscillation frequency Δm_s , weak mixing phase ϕ_s Note, Δm_s is insensitive, effectively falls out

The number of physics parameters it is possible to extract with the simultaneous fit depends on the available statistics

B_s Lifetime and Lifetime Difference (or $\Gamma \& \Delta \Gamma$)

- If we want both the lifetime and the lifetime difference we must fix the other parameters in the fit for low-ish statistics.
- $|A_{\perp}|$ and $|A_{\parallel}|$ can be fixed by using the results from fits to B_d decays.
- Δm_s will be measured in other experiments and due to insensitivity/high correlations will always be fixed.
- δ_{\perp} and δ_{\parallel} , the strong phases have little correlation with the other parameters and can be fixed without significantly affecting the results.
- ϕ_S , the weak phase is predicted to be small in the standard model and can be fixed at 0.04 (SM) for early measurements.



Γ & ΔΓ(2)

- It should be possible to perform the fit when there is at least 1 fb⁻¹ integrated luminosity available.
- Predicted statistical uncertainties for 1.8 fb⁻¹
 - $\Gamma_{\rm S}$ uncertainty: 1.8%
 - $-\Delta\Gamma_{\rm S}$ uncertainty: 36%
 - Correlation between parameters: -0.63
- Results from DØ from Jan 2007 (1.1fb⁻¹)
 - $\Gamma_{\rm S}$ uncertainty: 5.3%
 - $\Delta \Gamma_{\rm S}$ uncertainty: 67%

Measuring ϕ_s

- The standard model predicts ϕ_s to be 0.04.
- It is important to measure ϕ_s because if it is found to be much larger than 0.04 it will be a clear indication of new physics.
- In order to measure ϕ_s accurately it will be necessary to perform a fit to 5 parameters simultaneously.
- With 18fb⁻¹ integrated luminosity it should be possible to measure ϕ_s with an absolute uncertainty of 0.10.
- Note: we are working on improvements in statistics (via trigger) and tagging

Conclusions

- "Commissioning measurements" can remain as permanent sensitive tests alignment controls
- For 30fb⁻¹ we can really test BSM effects in CP violating phase
- Note: in this phase, BSM in CPV & in rare decay modes become very competitive