

Photon Reconstruction Efficiencies in Higgs—γγ Events

Neil Cooper-Smith RHUL

ATLAS UK Higgs Meeting - Durham 11/01/07

Motivation For Study

- Default ATLFAST does not account for particle reconstruction efficiencies.
- Standard solution: apply a flat 80% reconstruction efficiency to ATLFAST photons.
- \blacksquare However, lower efficiencies in crack and higher η regions not accounted for.
- □ For multi-photon final states, these effects add up.
- Tool available in CVS ATLFAST C.

Applies parameterised (P_T & η) particle reconstruction efficiencies and misid's to ATLFAST e, μ , γ and jets.

Efficiencies obtained from full simulation studies.

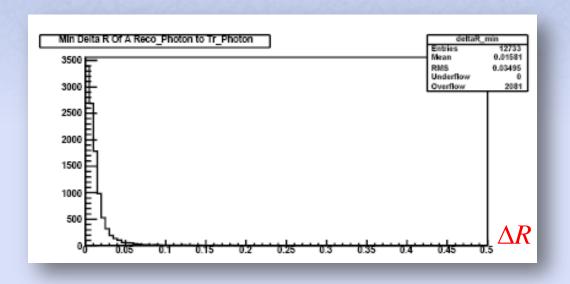
Developed by Sarah Allwood-Spiers, Chris Collins-Tooth, Tony Doyle, Samir Ferrag and Catherine Wright from Glasgow.

Introduction

- Study (in full sim) the impact on γ reconstruction efficiencies in a "quiet" and a "noisy" environment \Rightarrow ATLFAST.
- □ Full Simulation (gg+VBF)H $\rightarrow \gamma \gamma$: trig1_misal1_mc12.006384.PythiaH120gamgam.recon.AOD.v12000604
- □ Full Simulation ttH $\rightarrow \gamma \gamma$: trig1_misal1_mc12.006369.PythiattH120gamgam.recon.AOD.v12000604
- Hgg Analysis Tools used to create ntuples HggAnalysisUtils-00-03-17

	Dataset	
Information	Н→γγ	ttH→γγ
Version	12.0.6.4	12.0.6.4
Gen γ Eta Filter	±2.7	±3
Gen γ Pt Filter	20 GeV	0 GeV
# Of Events	9,750	14,500
Average γ Reco Efficiency	80.39%	82.21%

Truth H decay γs



- Used truth H decay γs.
- $(gg+VBF)H\rightarrow \gamma\gamma$ plots normalised to area $ttH\rightarrow \gamma\gamma$ ones.

Truth to Reconstructed Matching

Look at the ΔR_{min} between a truth γ and a full simulation reconstructed γ:

- Match accepted if closest reconstructed γ is inside a cone of $\Delta R = 0.1$ centered around the truth γ .
- However important to define reconstructed γs.

Reconstructed y Definition

Many definitions of reconstructed γs used in ATLAS, e.g.

EgammaPID γ definition with isEM==0.

ElectronPhotonID definition with isEM==o.

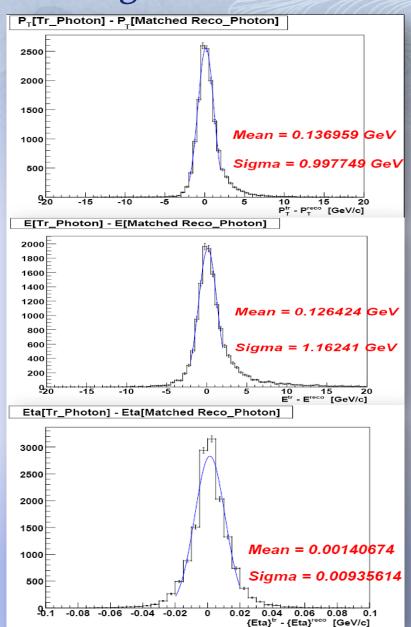
Hgg WG photonID: cuts on γ shower shapes (ingredients of isEM) derived by G.Unal for 12.0.X

- Important to state definition used when extracting reconstruction efficiencies for use elsewhere.
- Hgg definition most appropriate for this study so is used throughout.

$$(gg + VBF)H \rightarrow \gamma\gamma$$

$(gg + VBF)H \rightarrow \gamma\gamma$

Quality Of Matching

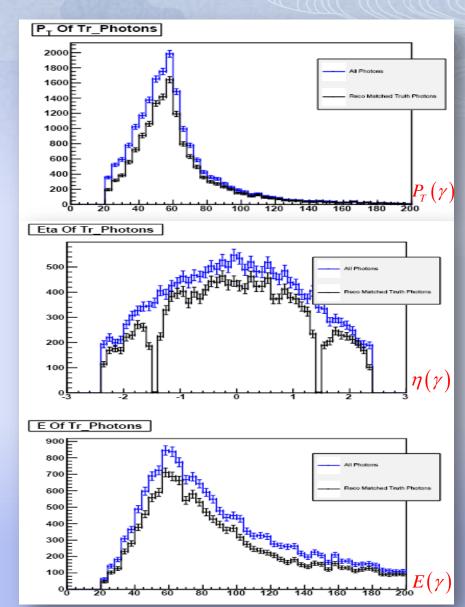

 $P_T(truth) - P_T(reco)$.

Gaussian fitted to give Offsets and Resolutions.

Peak Only Fitted

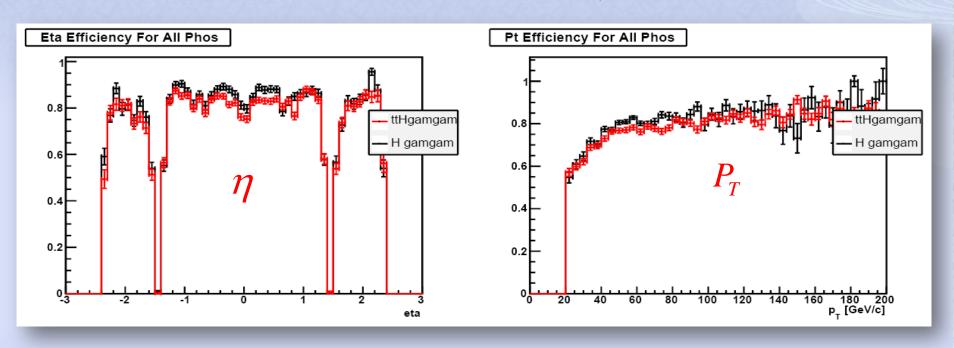
Energy (truth) – Energy (reco).

 η (truth) – η (reco).


$$(gg + VBF)H \rightarrow \gamma\gamma$$

$(gg + VBF)H \rightarrow \gamma\gamma$

Matched Truth


- Black: truth H decay γs which have a matched reco γ.
- **Blue**: all truth H decay γ s.

Shows a detector slant on the truth.

Definition Of Efficiency:

$$\varepsilon(P_t, \eta) = \frac{\text{No. Of Reco Match Truth } \gamma s}{\text{Total No. Of Truth } \gamma s}$$

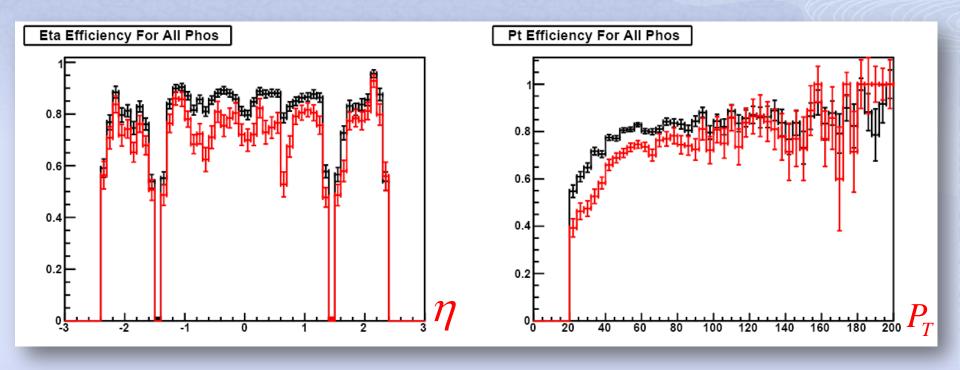

- Efficiency across η and P_T is physics independent for these samples \Rightarrow Justifiable to parameterise the reconstruction efficiency with just these two variables.
- **Kolmogorv** test statistic of **0.94** for efficiencies vs. η, and **0.99** for the P_T.

 $(gg + VBF)H \rightarrow \gamma\gamma$

 $(gg + VBF)H \rightarrow \gamma\gamma$

Truth Converted H Decay γs

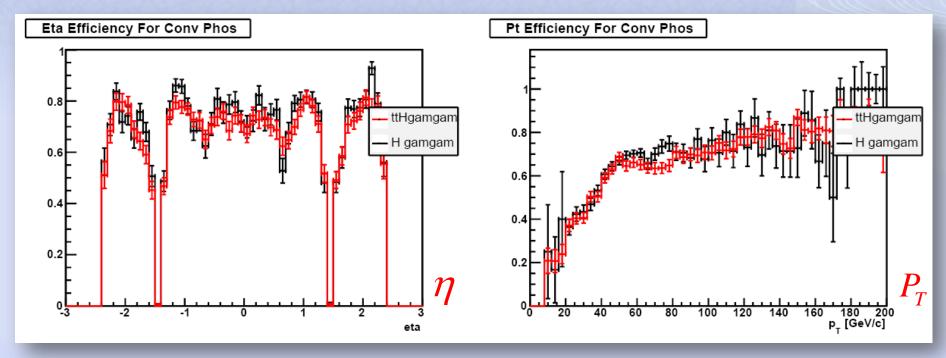
- \Box Used truth γ s from Higgs decay.
- **Converted** γ s in red and for reference all truth H decay γ s in black.



$$(gg + VBF)H \rightarrow \gamma\gamma$$

$$(gg + VBF)H \rightarrow \gamma\gamma$$

Converted y Reconstruction Efficiencies 1


 \Box Comparison of efficiency curves for converted and all H decay γ s,

Converted γ s have a lower reconstruction efficiency in central η and lower P_T region – to be investigated.

Converted y Reconstruction Efficiencies 2

Comparison of converted γ efficiencies between the ttH and (gg+VBF)H samples.

- Again γ reconstruction efficiencies from the two samples compare well.
- Physics independence shown No need to create channel specific parameterisations for converted γs from Higgs decays.

Summary

- Two H $\rightarrow \gamma \gamma$ samples investigated.
- \blacksquare Full simulation γ reconstruction efficiencies have been found to be:
 - dependant on only P_T , η .
 - physics independent (for the two samples).
- Converted γs:
 - lower reconstruction efficiencies at low P_T s and central η s to be understood.
 - account for a third of all Higgs decay γ (for the two samples).
 - physics independent (for the two samples).
- Further Work:
 - Repeat work on other high $P_T \gamma$ samples.
 - incorporate γ parameterisations presented here into ATLFASTC for use by others.