Semi-Leptonic tth(h→bb) CPPM,RAL,Glasgow,Genova,RHUL,UCL

ATLAS UK Physics Meeting 11-Jan-2008

Chris Collins-Tooth

Running Conditions & Event Rates

- Luminosity scenarios:
 - For 2008: (initial running)
 - $L < 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, $\int Ldt \sim 1 \text{ fb}^{-1}$
 - For 2009: (low-luminosity phase)
 - $L = 1-2 \ 10^{33} \ cm^{-2} \ s^{-1}$, $\int Ldt < 10 \ fb^{-1}$,
 - 30 fb⁻¹ between 2008 and 2010/2011
 - Beyond: (high-luminosity phase)
 - L~10³⁴ cm⁻²s⁻¹,
 - ~300 fb⁻¹ by 2014/2015
- Pile-up:
 - ATLAS expects ~2 (low-lumi) or 20 (high-lumi) p-p minimum bias interactions per bunch crossing (25 ns)

LHC SM Higgs Production and Decay

Production processes, K-factors and cross-section uncertainties: •

K~2.0, σ uncert ~10-20% NNLO K~1.2, σ uncert ~5% NLO K~1.1, σ uncert ~10% NLO

- Features:
 - − Attractive due to large BR(H→bb) at M_H <130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Large tails on mass reconstruction.

- Features:
 - − Attractive due to large BR(H→bb) at M_H <130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Large tails on mass reconstruction.

- Features:
 - − Attractive due to large BR(H→bb) at M_H <130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Large tails on mass reconstruction.

- Features:
 - − Attractive due to large BR(H→bb) at M_H <130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Large tails on mass reconstruction.

- Features:
 - − Attractive due to large BR(H→bb) at M_H <130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Large tails on mass reconstruction.

Missing Et used to reconstruct neutrino

- Features:
 - − Attractive due to large BR(H→bb) at M_H <130 GeV.
- Combinatoric background:
 - There are many ways to combine objects in the event
 - \rightarrow Large tails on mass reconstruction.
- Physics backgrounds:
 - Backgrounds must be determined from data, in MC $\sigma(ttjj)$ dependent on scale choice.
 - ttjj: b-tagging optimised to reject light jets.
 - ttbb (QCD & EW): 2 extra b-jets are not from a Higgs (typically QCD, so gluon radiation).

 \rightarrow Kinematic info can then be used to reject bg.

000000

goo'

Preselection (1 lepton, 6+jets, 4+bjets)

Electron Preselection (author ==1||3)

- Pt >25 GeV, $|\eta| < 2.5$
- IsEM & 0xFF
- Etcone20/ $P_{T_{elec}} < 0.15$
- Muon Preselection (Staco HighPt: author==1)
 - $\ \ \, \text{Pt} > 20 \ \, \text{GeV}, \ \ \, |\eta| < 2.5$
 - $.\chi^2/n_{dof} < 30$
 - Etcone20/ $P_T < 0.3$
 - $D0_{vtx} < 0.05 \text{ mm}$
- Neutrino Reconstruction
 - Solve $P_v z$ from 2nd order eqn. for W-mass
 - Use " Δ =0" if no real roots; (i.e. set -ve square root =0)
- Soft Muons to add to jets (Staco Collection author==1||2)
 - Not already passed muon preselection + inter-auth overlap removal
 - 4 < Pt < 100 GeV, $|\eta|$ < 2.5
 - $.\chi^2/n_{dof} < 30$
 - Etcone20/ $P_T > 0.1 \text{ GeV}$
 - Add muon to jet when $\Delta R(\mu,j) < 0.4$
- Jet Preselection
 - $Pt > 20 \text{ GeV}, |\eta| < 5$
 - Elec. overlap removal (use elec): $\Delta R(e,j) < 0.2 \&\& P_t elec/P_t jet > 0.75$
 - Calibrate with Atlfast out-of-cone
- B-tagging
 - 4 of the preselected jets within $|\eta| < 2.5$,
 - SV1+IP3D >= 4.5, but Σ btag(h)_II > 0, Σ 4b_II >8 used in constrained fit likelihood.

CPPM,RAL,Glasgow,UCL

Currently use cut-based approach & two likelihood analyses:

- Cut-based: used as a baseline for likelihoods.
- Marseille analysis, based on combinatorial likelihood.
- CVS-based analysis using constrained mass fit with 3D likelihood.
- All use the same loose preselection.
- All normalised to 30 fb⁻¹ and M_H =120GeV

Cut-based analysis

- Leptonic & Hadronic W reconstruction, masswindow cuts (±25 GeV) applied to remove e.g. QCD multijet background.
- -t,tbar reconstruction to remove e.g. W+jets bg.
- Event combinatorics; choose comb. Minimising $\chi^2 = (m_{Inb} m_t)^2 + (m_{jjb} m_t)^2$.
- Produce M_{bb} from two remaining b-jets after t,tbar are reconstructed.

Combinatorial likelihood analysis

- Combinatorial Ihd PDFs
 - done after preselection
- Combinatorial Ihd improves significance over cuts-based for this working point.
- Also improves Higgs purity, resolution
- As before, suffers from lack of stats!
- S/√B=2.2 for cut on Ihd=0.9 (Incl. mass window cut).

Constrained mass fit with 3-D lhd's

Pairing Likelihood:

- Fit 7 parameters (6E_j, P_Zv), form minimum χ^2
- Constraints: M_t , M_t , M_w , M_w , $6E_i^{\text{meas}}$
- Set of variables taken:

- ΔR I-b (Leptonic top)
- Jet η_{max}
- Higgs-b cosθ*
 - Raw hadronic M_t
 - Jet Charge
 - Σ_{loglikelihood}(4-btag)

Fraction selected

11-Jan-2008

Treat

as 1D

Constrained mass fit with 3-D lhd's

Signal/Background:

- Similar approach:
 - Major variables treated as full 3D
 - Minor ones added as if independent
- Set of variables taken:
- Full Il from combinatorics
- 3D Il_b_sum
 - sum_btag_Higgs
 - Δη H_top_min
- Full Max cos(tH) in CoM
- 3D P_H in CoM
- Ihd Δη between Higgs jets
 - Total Effect: peak in S/ \sqrt{B} =3.2
 - (stat only no systematics!)
 - (applying M_H window, $S/\sqrt{B}=2.5$)
 - Completely arbitrary 10% sys err. on background, S/\sqrt{B} drops dramatically!

11-Jan-2008

lhd

Pile-up

- Aim: study impact of pile-up on b-tagging performance, combinatorics, hard and soft leptons, mass resolutions.
- Background pile-up samples had a problem, >2Gb memory needed!
- First, look at signal samples only for low-lumi (10³³):

Glasgow

- Analyses do not yet include trigger (to do!), but effects investigated for e25i, e60 & mu20i.
- Efficiencies calculated after preselection for e25i showed a high-Pt drop-off
- e60 was considered, and appeared to improve efficiency with a manageable expected rate increase.

• Overall, efficiencies after preselection found to be:

Trigger level	ε(e25i or e60)	ε(e25i or mu20i)	ϵ (e25i or e60 or mu20i)
Level 1	98.7 ± 0.2%	88.3 ± 0.4%	92.4 ± 0.3%
Level 2	92.7 ± 0.4%	83.4 ± 0.4%	87.0 ± 0.4%
Eventfilter	86.0 ± 0.6%	79.7 ± 0.4%	82.7 ± 0.4%

11-Jan-2008

Conclusions

- Cut-based & likelihood analyses:
 - Likelihood analyses improve significance for a particular working point.
 - Achieved as high as 3.2σ [RAL, M_h=120, 30fb⁻¹], *but* with no systematics included \otimes
- Much work still to do:
 - Systematics
 - Trigger (esp. fully hadronic).
 - Fast Calo Sim sample for use in shape analysis.
 - Neural Net
 - Improving signal extraction