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Goal of this talk: to present recent (and not so recent)
developments in semiclassical quantum gravity that were
discovered by thinking about entanglement.



Part I: Why QFT is not “just QM”



I want to set up how entanglement can be a useful property in a
quantum system.



A single spin

Consider such a quantum system built out of a single spin.

H is two-dimensional and spanned by {|↓⟩ , |↑⟩}

The 3 vectors depicted here are those that map to themselves
under the action of σx, σy, σz respectively



Two spins

You can’t have entanglement with one d.o.f., so let’s spice it up
by considering a red spin and a blue spin.

H is now four dimensional:

H = span{| ↓⟩| ↓⟩, | ↓⟩| ↑⟩, | ↑⟩| ↓⟩, | ↑⟩| ↑⟩}



Magic trick

Starting from the state

|ψ⟩ = 1√
2
(| ↓⟩| ↓⟩+ | ↑⟩| ↑⟩)

but restricting to operators that only act on the red spin, e.g.:

{1⊗ 1, σx ⊗ 1, σy ⊗ 1, σz ⊗ 1}

we can generate all basis elements of H!



Magic trick

Let’s work it out explicitly:

1− σz√
2

⊗ 1|ψ⟩ = | ↓⟩| ↓⟩

σx − iσy√
2

⊗ 1|ψ⟩ = | ↓⟩| ↑⟩

σx + iσy√
2

⊗ 1|ψ⟩ = | ↑⟩| ↓⟩

1+ σz√
2

⊗ 1|ψ⟩ = | ↑⟩| ↑⟩

Marvel that, starting from the state |ψ⟩ on red and blue, but
acting on only red, we can generate all states in H



Important!

This would not have been possible had we started instead with
the state:

|χ⟩ = | ↓⟩| ↓⟩ .

It is hopefully clear that, by acting only on the red spin in the
state |χ⟩, we would only manage to generate a two-dimensional
subspace of H



What distinguishes between |ψ⟩ and |χ⟩...

... is entanglement



Entanglement

To understand how much entanglement there is, let us construct
the reduced density matrix on the red spin, in both states. We
achieve this by tracing over the blue Hilbert space:

ρψ = |ψ⟩⟨ψ| ρχ = |χ⟩⟨χ|
ρψ = TrHρψ ρχ = TrHρχ

ρψ =
1

2
(| ↓⟩⟨↓ |+ | ↑⟩⟨↑ |) ρχ = | ↓⟩⟨↓ |

From this exercise we see that ρψ is mixed, while ρχ is pure.



Entanglement entropy

The question of how much entanglement there is, is measured
by the entanglement entropy:

Sψ = −TrH ρψ log ρψ

= log 2

whereas Sχ = 0.



Lesson: In special entangled states,1 we can generate the
whole Hilbert space H, even if we only have access to operators
on a subset of the total degrees of freedom.

1We call such states cyclic.



Recap

Possible if H admits a tensor factorization

For H = H1 ⊗H2 where H1 and H2 are k dimensional, then

|ψ⟩ ≡
k∑
i=1

√
pi|i⟩|i⟩

is cyclic w.r.t operators in 1 & 2 if none of the pi = 0.



Local QFT

Now we move to continuum QFT on Minkowski space:

ds2 = −dt2 + dx⃗2

Consider a real scalar field ϕ(xµ), with vacuum state |0⟩ .

Lorentz invariance implies:

Pµ|0⟩ = 0 , [ϕ(xµ), ϕ(yµ)] = 0 if (xµ − yµ) is spacelike .



Local QFT fact

The Hilbert space H is generated by local operators on a
Cauchy slice, e.g.:

H = span

{
|0⟩,

n∏
i=1

ϕ(xµi )|0⟩, ∀n

∣∣∣∣∣ (ti = 0, x⃗i ∈ R3
)}∗



Reeh-Schlieder theorem

A surprising consequence of this construction is that the QFT
vacuum |0⟩ is cyclic w.r.t. subregions [Reeh-Schlieder ‘1961]

Meaning we can restrict to a region R and still generate H:

H = span

{
|0⟩,

n∏
i=1

ϕ(xµi )|0⟩,∀n

∣∣∣∣∣ (ti = 0, x⃗i ∈ R
)}



The proof of the Reeh-Schlieder theorem is easy to follow (see
e.g. [Witten’s APS Lectures, 2018]), but is technical and not
necessary for our purposes.



Reeh-Schlieder theorem

More surprisingly: if we consider two spacelike separated
regions R and R′, operators in each set individually generate H



Reeh-Schlieder theorem

Similarly: if we consider two regions R and R′, such that
R′ ⊂ R, both sets individually generate H



Here the analogy with the finite dimensional QM breaks down.
Saying |0⟩ is cyclic for some region R leads us to write:

|0⟩ ≡
∑
i

√
pi|i⟩inside R|i⟩outside R

in analogy with the state |ψ⟩ on two spins.

But this would imply there is a non-cyclic state, e.g.

|χ⟩ = |1⟩inside R|1⟩outside R .

But, by construction, all states look like |0⟩ at short distances,
so such a |χ⟩ can’t exist.



What has happened?

Again what’s special in this case...

... is entanglement



Too much entanglement

If we try to quantify the entanglement of the region R in the
continuum, we run into problems. Need to introduce a cutoff
procedure, like a lattice spacing ϵ. Then:

SR =
Area(R)

ϵ2
+ subleading



Too much entanglement

SR =
Area(R)

ϵ2
+ subleading

But this means that the amount of entanglement between a
region R and the rest of the Cauchy-slice is UV-divergent, a.k.a
scheme-dependent, a.k.a ambiguous.

Even entropy differences in the same state are ambiguous, e.g.
for two regions R and R′, such that R′ ⊂ R, we have

SR − SR′ =
Area(R)−Area(R′)

ϵ2
= UV divergent



However, because the divergence is geometric, it is universal.
Therefore, for the same region R, but comparing two different
states ρ1,2:

SR(ρ1)− SR(ρ2) = finite



A classification

In [von Neumann ’1930], von Neumann classified the operator
algebras that act on Hilbert space:

▶ Type I: like our spin example. Entropies are well-defined.

▶ Type II: Like classical physics. Entropy is defined up to a
state-independent additive constant. Entropy differences
well-defined.

▶ Type III: like our QFT example. Entropies are UV
divergent.



Recap

QFT states have enormous amounts of entanglement. So much
that you can generate the whole Hilbert space by acting locally
within a small region.

This is because the H factorizes into an Hin ⊗Hout for all
subregions.

The amount of entanglement is so large, that entropy ceases to
make sense as a calculable in the continuum.



Part II: Why QG is not “just QFT”



Goal of this part: to port some of the concepts from the
previous section to semi-classical gravity





Black hole entropy

Brief timeline of events:

▶ [Hawking, ’1971] showed dABH ≥ 0 in physical processes

▶ [Bekenstein ’1972-1974] connected this to the thermodynamic
second law dSBH ≥ 0

▶ [Hawking, ’1974] showed that SBH = kBc
3ABH

4Gℏ



SBH
ABH

= 1.4× 1069 bits per square meter.

This is an enormous number, but certainly not divergent or
ambiguous.

How do we reconcile that this number is finite, with the
expectation from QFT that entropies of regions are UV
divergent?



Moreover, the first law dABH ≥ 0—interpreted in terms of
entropy—implies we can compute entropy differences.

To illustrate these confusions, let us discuss a different derived
concept: The Bekenstein Bound



Bekenstein Bound

Black hole considerations led Bekenstein to propose a universal
bound on the entropy in a region of size L and energy E
[Bekenstein ‘1981]:

SL ≤ 2πkB
ℏc

LE

which is saturated for black holes.

Based on the complaints described earlier, rigorously proving
such an inequality will requires taming the infinities to say
something scheme-independent



Bekenstein Bound

Another issue in the Bekenstein bound:

SL ≤ 2πkB
ℏc

LE .

▶ QFT Hamiltonian is not local (acts on Cauchy slice)

▶ Restricting it to a region L introduces cutoff dependence.



To make sense of this, Casini [Casini ‘2008] replaced Bekenstein’s
formula with the UV finite:

SL(ρ1)− SL(ρ0) ≤ Tr(Kρ1)− Tr(Kρ0)

where ρ0 and ρ1 density matrices reduced to the region L.

We have also defined:

K ≡ − log ρ0

is the Modular Hamiltonian of ρ0. (Think of the thermal
density matrix at T = 1: ρ = e−H)



Casini’s formula is equivalent to:

S
ρ1||ρ0
L ≡ −Tr(ρ1 log ρ1) + Tr(ρ1 log ρ0) ≥ 0

which is a result known as monotonicity of relative
entropy—proved in the 70s [Lindblad, ‘1975][Araki, ‘1976][Uhlmann

‘1977] (see also [Petz, ‘2002])

It’s interesting to note that Bekenstein landed on a (incorrect)
version of the monotonicity of relative entropy just by thinking
about black holes.



Moreover relative entropy rigorously satisfies:

S
ρ1||ρ0
L+δL − S

ρ1||ρ0
L ≥ 0

which is how we think a BH behaves as matter falls in and its
area increases.

Following these developments, Wall [Wall, 2011] proved the
Generalized Second Law of BH thermodynamics in semiclassical
gravity.



But these notions are cumbersome. Some thoughts:

▶ Area theorem and BH entropy never referenced a regulator,
or needed regularization.

▶ In fact, no known lattice cutoff procedure resulting in a
diff. inv. theory in the continuum.

▶ What is the significance of 1.4× 1069 bits per square meter?



Alternatively: somtimes said that the difficulty in defining
entropy in gravity comes from the failure of H to split into
tensor factors due to the diff constraint.[Donnelly, Giddings

‘2016-18] [Raju ‘2021]

Controversial opinion: This can’t be the full story.
Bekenstein-Hawking formula does just fine.



It’s not an Xmas meeting without a picture of Santa

In a series of papers [Solodukhin ‘1994] [Susskind and Uglum, ‘1994]

showed that a QFT coupled to gravity will change the entropy
of a BH:

SBH+QFT =
A

4G
+
A

ϵ2
+ subleading

=
A

4G(ϵ)
+ . . .

which they interpreted as a running of the bare Newton’s
constant G.



Now there’s a new interpretation of this idea in terms of Von
Neumann Algebras [Leutheusser and Liu, ‘2021] [Witten ‘2021]:

Gravity turns a Type III operator algebra into a Type II
algebra. This allows entropy differences to make sense, as
needed for the second law.

How gravity achieves this is the subject of the final part of the
talk.



Part III: Some final comments about holography



You’ll notice that in this entire talk I didn’t mention
holography (particularly in AdS).

But there have been many concerted efforts to understand
entropy and entanglement in terms of semiclassical bulk gravity
path integrals [Gibbons, Hawking ‘1977] [Hawking, Page ‘1983] [Ryu,

Takayanagi ‘2006] [Hubeny, Rangamani, Takayanagi ‘2006] [Lewkowycz,

Maldacena ‘2013] [Jafferis, Lewkowycz, Maldacena, Suh ‘2015]



Ryu-Takayanagi formula

[Ryu, Takayanagi ‘2006]



Ryu-Takayanagi proof

[Lewkowycz, Maldacena ‘2013]



In this example, at leading order the operator algebra remains
type III because the volume of the RT surface is divergent at
the boundary.

But it is possible to include quantum corrections, to get a
formula closer to the results of Solodhukin and Susskind and
Uglum. [Jafferis, Lewkowycz, Maldacena, Suh ‘2015]



Information Paradox

[Pennington ‘2019] [Almheiri, Hartman, Maldacena, Shaghoulian, Tajdini

’2019]

And just thinking about defining these entropies from the
gravity path integral has led to progress on old problems.



Final comment:

The gravity path integral is obviously an ill-defined object....



Final comment:

[Saad, Shenker, Stanford ‘2018]

... but my hope for the future is that a better understanding of
entanglement will teach us precisely how to compute the path
integral.


