Non-perturbative Physics in Precision Event Simulations

Peter Skands

RS Wolfson Visiting Fellow, U of Oxford \& Monash University

From High Energies to Confinement

Consider a "hard" process

"Hard" = large momentum transfers Example: $g g \rightarrow t \bar{t}$ Here, $Q^{2} \sim m_{t}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}$

Accelerated charges (QED \& QCD)
\rightarrow Bremsstrahlung (QED \& QCD)
\rightarrow Perturbative Methods
Near-Future Goal: NNLO + NNLL
\rightarrow Percent-level precision
At wavelengths $\sim r_{\text {proton }} \sim 1 / \Lambda_{\mathrm{QCD}}$
Some dynamical process must ensure quarks and gluons become confined inside hadrons: Hadronization

How much do we know about that?

Linear Confinement

In lattice QCD, compute the potential energy of a colour-singlet $q \bar{q}$ state, as a function of the distance, r, between the q and \bar{q}

"Cornell Potential" fit: $V(r)=-\frac{a}{r}+\kappa r \quad$ with $\kappa \sim 1 \mathrm{GeV} / \mathrm{fm} \quad(\rightarrow$ could lift a 16-ton truck)

Motivates a model:

Let colour field collapse into a narrow flux tube of uniform energy density

$$
\mathrm{k} \sim 1 \mathrm{GeV} / \mathrm{fm}
$$

Limit \rightarrow Relativistic $1+1$ dimensional
 worldsheet

Map:
Quarks \rightarrow String Endpoints
Gluons \rightarrow Transverse Excitations (kinks)
Physics then in terms of string worldsheet evolving in spacetime
Nambu-Goto action \Longrightarrow Area Law.

String Breaking

In "unquenched" OCD

$g \rightarrow q \bar{q} \Longrightarrow$ The strings will "break"
Non-perturbative so can't use $P_{g \rightarrow q \bar{q}}(z)$
Model: Schwinger mechanism

Schwinger Effect

Non-perturbative creation of $\mathrm{e}^{+} \mathrm{e}^{-}$pairs in a strong external Electric field
Probability from Tunneling Factor

$$
\mathcal{P} \propto \exp \left(\frac{-m^{2}-p_{\perp}^{2}}{\kappa / \pi}\right)
$$

(κ is the string tension equivalent)

\Longrightarrow Gaussian suppression of high $m_{\perp}=\sqrt{m_{q}^{2}+p_{\perp}^{2}}$
Assume probability of string break constant per unit world-sheet area

(Alternative: The Cluster Model — Used in Herwig and Sherpa)

In "unquenched" OCD

$g \rightarrow q \bar{q} \Longrightarrow$ The strings will "break"
Non-perturbative so can't use $P_{g \rightarrow q \bar{q}}(z)$
Alternative: force $g \rightarrow q \bar{q}$ at end of shower

Large clusters \rightarrow string-like splittings

Returning to Strings: the String Fragmentation Function

Schwinger \Longrightarrow Gaussian p_{\perp} spectrum (transverse to string axis) \& Prob(d:u:s) $\approx 1: 1: 0.2$ The meson M takes a fraction z of the quark momentum, Probability distribution in $z \in[0,1]$ parametrised by Fragmentation Function, $f\left(z, Q_{\mathrm{HAD}}^{2}\right)$

(Note on the Length of Strings)

In Spacetime:

String tension $\approx 1 \mathrm{GeV} / \mathrm{fm} \rightarrow$ a $50-\mathrm{GeV}$ quark can travel 50 fm before all its kinetic energy is transformed to potential energy in the string. Then it must start moving the other way. (\rightarrow "yo-yo" model of mesons. Note: string breaks \rightarrow several mesons)

The MC implementation is formulated in momentum space

Lightcone momenta $p_{ \pm}=E \pm p_{z}$ along string axis
\rightarrow Rapidity (along string axis) and p_{\perp} transverse to it

If the quark gives all its energy to a single pion traveling along the z axis

$$
y=\frac{1}{2} \ln \left(\frac{E+p_{z}}{E-p_{z}}\right)=\frac{1}{2} \ln \left(\frac{\left(E+p_{z}\right)^{2}}{E^{2}-p_{z}^{2}}\right) \quad y_{\max } \sim \ln \left(\frac{2 E_{q}}{m_{\pi}}\right) \underset{\substack{\text { Increasing } E_{q} \rightarrow \text { logarithmic } \\ \text { growth in rapidity range }}}{\substack{\text { and }}}
$$

Particle Production:

Scaling in $z \Longrightarrow$ flat in rapidity (long. boost invariance)

"Lightcone scaling"

$$
\left\langle n_{\mathrm{ch}}\right\rangle \approx c_{0}+c_{1} \ln E_{\mathrm{cm}}, \sim \text { Poissonian multiplicity distribution }
$$

Gluon Kinks: The Signature Feature of the Lund Model

Gluons are connected to two string pieces

Each quark connected to one string piece
Expect factor $\sim 2 \sim C_{A} / C_{F}$ more particles in gluon jets
Important for discriminating new-physics signals
Decays to quarks vs decays to gluons,

ATLAS, Eur.Phys.J. C76 (2016) no.6, 322

See also
Larkoski et al., JHEP 1411 (2014) 129 Thaler et al., Les Houches, arXiv:1605.04692

Other String Topologies

Open Strings

$q \bar{q}$ strings (with gluon kinks)

$$
\begin{gathered}
\text { E.g., } Z \rightarrow q \bar{q}+\text { shower } \\
H \rightarrow b \bar{b}+\text { shower }
\end{gathered}
$$

Closed Strings

Gluon rings
E.g., $H \rightarrow g g+$ shower
$\Upsilon \rightarrow g g g+$ shower

SU(3) String Junction

Open strings with $N_{C}=3$ endpoints
E.g., Baryon-Number violating neutralino decay $\tilde{\chi}^{0} \rightarrow q q q+$ shower

pp Collisions

In pp collisions, we are not hadronizing a simple $q-g-\ldots-g-\bar{q}$ string
Coloured initial states + gluon exchanges
\Longrightarrow more complicated colour flows
Also: Protons are composite
One proton = beam of partons
$+\mathrm{QCD} 2 \rightarrow 2$ scattering diverges at low PT
$\Longrightarrow \sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)>\sigma_{\text {proton-proton }} \rightarrow$ Interpretation: $\frac{\sigma_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)}{\sigma_{\text {hadron-hadron }}} \sim\langle n\rangle_{\text {parton-parton }}\left(\hat{p}_{\perp}\right)$ (Regulated at low \hat{p}_{\perp} by IR cutoff \sim colour screening)

Multiple Parton-Parton Interactions (MPI)

\rightarrow Additional colour exchanges

A Brief History of MPI (in PYTHIA)

1987
[Sjöstrand \& van Zijl, Phys.Rev.D 36 (1987) 2019]
Cast MPI as Sudakov-style evolution equation
Analogous to $\sigma_{X+j e t}\left(p_{\perp}\right) / \sigma_{X}$ for parton showers
 $\mathrm{p} \propto \sigma_{2 \rightarrow ว}\left(x_{T}, b\right) / \sigma_{n n} \quad ; \quad x_{T}=2 \hat{p}_{\perp} / \sqrt{ } / s$

 observed, whose height is independent of the jet E_{T}. Its value is substantially higher than the one observed

sit on top of - higher-than average particle densities

 (compared with the average $=$ minimum-bias pp collision)

2005 [Sjöstrand \& PS, Eur.Phys.J.C 39 (2005) 129] Interleave MPI \& ISR evolutions in one common sequence of PT \rightarrow ISR \& MPI "compete" for the available x in the proton remnant.

2011 [Corke \& Sjöstrand, JHEP 03 (2011) 032] Also include FSR in interleaving

2021 [Brooks, PS, Verheyen, SciPost Phys. 12 (2022) 3] Also include Resonance Decays in interleaving (VINCIA)

Confinement

High-energy pp collisions with MPI + OCD bremsstrahlung

Final states with very many coloured partons With significant overlaps in phase space Who gets confined with whom?

Each has a colour ambiguity $\sim 1 / N_{C}^{2} \sim 10 \%$
E.g.: random triplet charge has $1 / 9$ chance to be in singlet state with random antitriplet:

$$
3 \otimes \overline{3}=8 \oplus 1 \text {, etc. }
$$

Many charges \rightarrow Colour Reconnections* (CR) more likely than not

$$
\text { Expect Prob(no CR) } \propto\left(1-\frac{1}{N_{C}^{2}}\right)^{n_{\mathrm{MPI}}}
$$

> "Parton Level"
(Event structure before confinement)

Colour (Re)connections

Colour Flow in MC Event Generators

Based on "Leading Colour": $8 \sim 3 \otimes \overline{3}$
Gluons ~ Direct product of 3 and $\overline{3}$
Formally corresponds to a limit $N_{C} \rightarrow \infty$
Unique colour flow; no interferences

2015
 [Christiansen \& PS JHEP 08 (2015) 003]

Stochastic sampling of beyond-LC correlations in colour space (incl MPI, etc)
Weighted by SU(3) group weights:

$$
\begin{array}{ll}
3 \otimes \overline{3}=8 \oplus 1 & 3 \otimes 3=6 \oplus \overline{3} \\
3 \otimes 8=15 \oplus 6 \oplus 3 & 8 \otimes 8=27 \oplus 10 \oplus \overline{10} \oplus 8_{S} \oplus 8_{A} \oplus 1
\end{array}
$$

Interpret Confinement \longleftrightarrow any connection that can screen QCD charge

+ Use string area law to split degeneracies: minimise string "length"

QCD Reconnections \longleftrightarrow String Junctions

Stochastically restores colour-space ambiguities according to SU(3) algebra
$>$ Allows for reconnections to minimise string lengths

Dipole-type reconnection

What about the red-green-blue colour singlet state?

Fragmentation of String Junctions

Assume Junction Strings have same properties as ordinary ones (u:d:s, Schwinger pT, etc)
> No new string-fragmentation parameters

Confront with Measurements

LHC experiments report very large (factor-10) enhancements in heavy-flavour

 baryon-to-meson ratios at low p_{T} !

Very exciting!

Confront with Measurements: Strangeness

What about Strange heavy-flavour baryons?

> Even more exciting!

What a strange world we live in, said Alice

We know ratios of strange hadrons to pions strongly increase with event activity Landmark measurement by ALICE (2017)

\rightarrow Non-Linear String Dynamics?

MPI \Longrightarrow lots of coloured partons scattered into the final states

Count \# of flux lines crossing $y=0$ in pp collisions (according to PYTHIA):

Confining fields may be reaching much higher effective representations than simple
quark-antiquark (3) ones.

Two approaches in PYTHIA:

1) Colour Ropes (Lund)
2) Close-Packing (Monash)

Work in Progress: Strangeness Enhancement from Close-Packing

Idea: each string exists in an effective background produced by the others

Close-packing

Dense string environments
\rightarrow Casimir scaling of effective string tension
\rightarrow Higher probability of strange quarks
Strange Junctions

String breaks
vs.
Results in strangeness enhancement focused in baryon sector

String tension could be different from the vacuum case compared to near a junction

Implications for Precision Event Generators

ATLAS PUB Note

ATL-PHYS-PUB-2022-021
29th April 2022

Variation largest for gluon jets

For $E_{T}=[30,100,200] \mathrm{GeV}$
Max JES variation = [3\%, 2\%, 1.2\%]

Dependence of the Jet Energy Scale on the Particle Content of Hadronic Jets in the ATLAS Detector Simulation

The dependence of the ATLAS jet energy measurement on the modelling in Monte Carlo simulations of the particle types and spectra within jets is investigated. It is found that the hadronic jet response, i.e. the ratio of the reconstructed jet energy to the true jet energy, varies by $\sim \mathbf{1 - 2 \%}$ depending on the hadronisation model used in the simulation. This effect is mainly due to differences in the average energy carried by kaons and baryons in the jet. Model differences observed for jets initiated by quarks or gluons produced in the hard scattering process are dominated by the differences in these hadron energy fractions indicating that measurements of the hadron content of jets and improved tuning of hadronization models can result in an improvement in the precision of the knowledge of the ATLAS jet energy scale.

Fraction of jet E_{T} carried by baryons

 (and kaons) varies significantly> Reweighting to force similar baryon and kaon fractions

Max variation \rightarrow [1.2\%, 0.8\%, 0.5\%]
Significant potential for improved Jet Energy Scale uncertainties!

Motivates Careful Models \& Careful Constraints

Interplay with advanced UE models
In-situ constraints from LHC data
Revisit comparisons to LEP data

Summary

MC generators connect theory with experiment

Extra Slides

Consider a parton emerging from a hard scattering (or decay) process

How about I just call it ~ a hadron?

Local Parton Hadron Duality \longleftrightarrow Independent Fragmentation

$$
\begin{aligned}
& \quad F_{\pi / q}\left(Q_{F}, x\right) \\
& \text { Fragmentation Function }
\end{aligned}
$$

Late 70s MC models: Independent Fragmentation

E.g., PYTHIA (then called JETSET) anno 1978

```
LU TP 78-18 November, 1978
A Monte Carlo Program for Quark Jet Generation
T. Sjöstrand, B. Söderberg
A Monte Carlo computer program is presented, that
simulates the fragmentation of a fast parton into a
jet of mesons. It uses an iterative scaling scheme and
is compatible with the jet model of Field and Feynman.
```

```
fragmentation model.
```

GUPROUTINE JETGEN(N)
COMMON /JET/ K(100.2), $P(100,5)$
COMMON PAR/ PUD, PS1, SIGMA, CX2, EBEG, WFIN, IFLEEG COMMON PART PAS MESO(9,2), CMIX (6,2), PMAS(19)
COMMON $=(10-1 F(B E G) / 5$
IFLSGN= 10
$W=2$.*ESEG
$\mathrm{W}=2$.
$\mathrm{I}=0$
C I FLAVOUR AND PT FOR FIRST QUARK
IFLI=IABS (IFLBEG)
PTI =SIGMA*SQRT (-ALOG $\operatorname{RANF}(0))$)
PHI1=6.2832*RANF (0)
$\mathrm{P} \mathrm{X}_{1}=\mathrm{PT} \mathrm{T}_{1} * \operatorname{Cos}(\mathrm{PHI} 1)$
PYI=PT1*SIN(PHIT)
$100 \quad I=I+1$
C 2 FLAVOUR AND PT FOR NEXT ANTIQUARK
$I F L 2=1+I N T$ (RANF (D)/PUD)
PTZ=SIGMA*SORT (-ALOG(RANF (O))
PHI2 $=6.2832 * R A N F(0)$
PX $2=$ PT $2 * \operatorname{COS}($ PHI 2$)$
PYZ $=$ PTZ*SIN(PHIZ)
c 3 MESON FORMED, SPIN ADDED AND FLANOUN
KCPIN $=$ INT $(P S I+R A N F(0))$
$I S P I N=I N T(P S I+R A N F(0))$
IF (K (I,1).LE.6) GOTO 110
TMIX=RANF (0)
$K M=K(I, 1)-6+3 * I S P I N$
$K\{I, 2)=8+9 * 1 S P I N+I N T(T M I X+C M I X(K M, 1))+I N T(T M I X+C M I X(K M, 2))$
C 4 MESON MASS FROM TABLE, PT FROM CONSTITUENTS
$110 \mathrm{P}(1,5)=\operatorname{PMAS}(K(1 ; 2))$
$P(I, 1)=P X 1+P X_{2}$
$\mathrm{P}(1,2)=\mathrm{PY} 1+\mathrm{PY} 2$
PMTS $=P(1,1) * * 2+P(1,2) * * 2+P(1,5) * * 2$
c 5 RANDOM CHOICE OF $X=(E+P Z) M E C O N$ GIVES E ANO PZ $X=$ RANF (0)
IF (RANF (0$) \cdot L T, C X 2) \quad X=1,-X * *(1, / 3$.
$P(I, 3)=(X * W-P M T S /(X * W)) / 2$
P(I,4)=(X*W+PMTS CHAIN INTO STABLE PARTICLES
6 IF
120 IPD=IPD $1 F(K(I P D, 2)$ GE 8) CALL DECAY(IPD,I) JF(IPD T ANO. I.LE, 96) GOTO 120
7 FLAVOUR ANO PT OF MARK FORMED IN PAIR WITH ANTIQUARK ABOVE
$I F L 1=1 F L 2$
YFL $1=1 F L 2$
PX1 $=-\mathrm{PXZ}$
$P Y 1=-P Y 2$
C 8 IF ENOUGH E+PZ LEFT, GO TO 2 $W=(1,-x) * W$
IF(W.GT.WFIN.AND.I.LE.95) GOTO 100
$\mathrm{N}=\mathrm{I}$
RETURN
END

Colour Neutralisation

A physical hadronization model

Should involve at least two partons, with opposite colour charges

A strong confining field emerges between the two when their separation $\gtrsim 1 \mathrm{fm}$

Iterative String Breaks

Causality \rightarrow May iterate from outside-in

Note: using light-cone coordinates: $p_{+}=E+p_{z}$

On average, expect energy of nth "rank" hadron $\sim E_{n} \sim<z>n E_{0}$

Fragmentation of String Junction Systems

Assume vortex-line string picture still OK

Which topology? Y, $\Delta, ~ V, T, \ldots$?
Baryon wave functions \& minimal string length

$1^{\text {st }}$ String-Junction Fragmentation Model
Sjöstrand \& PS, Nucl.Phys.B 659 (2003) 243
Focused on hard BNV processes: $\tilde{\chi} \rightarrow q_{i} q_{j} q_{k^{\prime}} \tilde{t}_{i}^{*} \rightarrow q_{j} q_{k^{\prime}} \ldots$ Fun (but a bit of a long shot ...)
(Junction strings can also have kinks):

Would love to tell you this has been seen at LHC But then you probably wouldn't be hearing about it from me However, string junctions may have been seen!

Predicting the Junction Baryon Spectrum

The Junction Baryon = smoking gun of String Junctions
Predicting the movement of the string junction is crucial!
To make solid predictions for Junction Baryon spectra, we use a trick: sjostrand \&PS, Nucl.Phys. 8 659 (2003) 243
Find the Lorentz frame in which the string junction is at rest (JRF)
Inverse boost (+ $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$ kicks) \Longrightarrow junction baryon spectrum
Junction $=$ Topological Feature of Confinement Field
$V(r)=\kappa r$
\Longrightarrow each "leg" (string piece) acts on the other two with constant force
$\vec{F}=\kappa \vec{e}_{r}$.
\Longrightarrow In "Mercedes Frame", the angle is 120° between the legs Massless legs: exact solution. Mercedes Frame = Junction Rest Frame (JRF). Massive legs (eg heavy flavours or ones with lots of kinks!) => Iterative algorithm. But org algorithm often broke down (failed to converge) for "soft legs"

Does a Boost to the Mercedes Frame Always Exist?

Consider the following kinematic case

In the rest frame of one of the partons, and the angle between the other two is greater than 120 degrees (not considered in org algorithmic implementation)

The case of a heavy slow endpoints: Pearl on a String

String Motion: Soft Massless Case

 "ARIADNE frame" $E_{1} \ll \min \left(E_{2}, E_{3}\right)$

Similar to a mesonic string with a gluon kink

The junction gets "stuck" to the soft quark, which we call a pearl-on-astring
More likely to occur for junctions with heavy flavour endpoints

For a string junction to make a heavy baryon, the junction leg with the heavy quark can't "break" (i.e. a "soft" junction leg) = pearl-on-a-string!

String Motion: Slow Massive Case

Example for pp collisions at 13 TeV — PYTHIA's default MPI model

*note: can be arbitrarily soft

Strings should push each other transversely

Colour-electric fields \rightarrow Classical force
Model string radial shape \& shoving physics
\Longrightarrow force $f\left(d_{\perp}\right)=\frac{g \kappa d_{\perp}}{R^{2}} \exp \left(-\frac{d_{\perp}^{2}}{4 R^{2}}\right)$

g : fraction of energy in chromoelectric field (as opposed to in condensate or magnetic flux)
d_{\perp} : transverse distance (in string-string "shoving frame") R : string radius
κ : string tension $\sim 1 \mathrm{GeV} / \mathrm{fm}$

