ASPECTS OF SCET AND COLLIDER PHENOMENOLOGY FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES AND RESUMMATION OF SUPER-LEADING LOGARITHMS

MATTHIAS NEUBERT

PRISMA+ CLUSTER OF EXCELLENCE \& MITP JOHANNES GUTENBERG UNIVERSITY MAINZ

UK ANNUAL THEORY MEETING
DURHAM, UK, 12 NOV. 2023
based on:
T. Becher, MN, D. Shao [2107.01212]; T. Becher, MN, D. Shao, M. Stillger [2307.06359]
P. Böer, MN, M. Stillger [2307.11089]; P. Böer, P. Hager, MN, M. Stillger, X. Xu [2311.18811]
and ongoing work

LARGE LOGARITHMS IN LHC JET PROCESSES

CERN Document Server, ATLAS-PHOTO-2018-022-6

LARGE LOGARITHMS IN LHC JET PROCESSES

Perturbative expansion includes "super-leading" logarithms:

$$
\sigma \sim \sigma_{\text {Born }} \times\left\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\alpha_{s}^{3} L^{3}+\ldots\right\}
$$

LARGE LOGARITHMS IN LHC JET PROCESSES

Perturbative expansion includes "super-leading" logarithms:

$$
\begin{aligned}
& \sigma \sim \sigma_{\text {Born }} \times\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\alpha_{s}^{3} L^{3}+\underbrace{\left.\alpha_{s}^{4} L^{5}+\alpha_{s}^{5} L^{7}+\ldots\right\}}_{\text {formally larger than O(1) }} \\
& \text { state-of-the-art } \\
& \text { J. R. Forshaw, A. Kyrieleis, M. H. Seymour (2006) }
\end{aligned}
$$

LARGE LOGARITHMS IN LHC JET PROCESSES

Really, a double logarithmic series starting at 3-loop order:

$$
\sigma \sim \sigma_{\text {Born }} \times\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\left(\alpha_{s} \pi^{2}\right)[\underbrace{\left.\left.\alpha_{s}^{2} L^{3}+\alpha_{s}^{3} L^{5}+\ldots\right]\right\}}_{\substack{\text { formally larger than O(1) } \\ \text { J.R. Forshaw, A. Kyrieleis, M. . . Seymour (2006) }}}
$$

COULOMB PHASES BREAK COLOR COHERENCE

Super-leading logarithms

- Breakdown of color coherence due to a subtle quantum effect: soft gluon exchange between initial-state partons
J. R. Forshaw, A. Kyrieleis, M. H. Seymour (2006)
- Soft anomalous dimension:

$$
\boldsymbol{\Gamma}(\{\underline{p}\}, \mu)=\sum_{(i j)} \frac{\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}}{2} \gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{-s_{i j}}+\sum_{i} \gamma^{i}\left(\alpha_{s}\right)+\underset{\text { T. Becher, M. Neubert (2009) }}{\mathcal{O}}\left(\alpha_{s}^{3}\right)
$$

where $s_{i j}>0$ if particles i and j are both in initial or final state

- Imaginary part (only at hadron colliders):

$$
\operatorname{Im} \boldsymbol{\Gamma}(\{\underline{p}\}, \mu)=+2 \pi \gamma_{\mathrm{cusp}}\left(\alpha_{s}\right) \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2}+(\ldots) \underset{\uparrow}{\boldsymbol{i} r r e l e v a n t}
$$

THEORY OF JET PROCESSES AT LHC

Loss of color coherence from initialstate Coulomb interactions

- Weird "super-leading logarithms"
red: Coulomb gluons
blue: gluons emitted along beams
green: soft gluons between jets

$$
d \sigma_{p p \rightarrow f}(s)=\sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} f_{a / p}\left(x_{1}, \mu\right) f_{b / p}\left(x_{2}, \mu\right) d \sigma_{a b \rightarrow f}\left(\hat{s}=x_{1} x_{2} s, \mu\right)
$$

THEORY OF JET PROCESSES AT LHC

Loss of color coherence from initialstate Coulomb interactions

- Weird "super-leading logarithms"
- Breakdown of naive factorization
red: Coulomb gluons
blue: gluons emitted along beams
green: soft gluons between jets

$$
d \sigma_{p p \rightarrow f}(s) \neq \sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} f_{a / p}\left(x_{1}, \mu\right) f_{b / p}\left(x_{2}, \mu\right) d \sigma_{a b \rightarrow f}\left(\hat{s}=x_{1} x_{2} s, \mu\right)
$$

THEORY OF JET PROCESSES AT LHC

red: Coulomb gluons
blue: gluons emitted along beams green: soft gluons between jets

Loss of color coherence from initialstate Coulomb interactions

- Weird "super-leading logarithms"
- Breakdown of naive factorization
- Phenomenological consequences?

èrc AdG EFT4jets

Need for a complete theory of quantum interference effects in jet processes!

THEORY OF NON-GLOBAL LHC OBSERVABLES

SCET factorization theorem

$$
\begin{aligned}
& \sigma_{2 \rightarrow M}\left(Q, Q_{0}\right)=\sum_{\substack{\text {. } \\
\text { T. Becher, M. Neubert, D. Shao. (2021) }}} \int d x_{1} d x_{2} \sum_{m=2+M}^{\infty}\left\langle\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu\right)\right\rangle \\
& \text { [see also: T. Secher, M. Neubert, L. Rothen, D. Shao (2015, 2016)] } \\
& \text { high scale low scale }
\end{aligned}
$$

THEORY OF NON-GLOBAL LHC OBSERVABLES

SCET factorization theorem

Rigorous operator definition:
$\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu)=\frac{1}{2 Q^{2}} \sum_{\text {spins }} \prod_{i=1}^{m} \int \frac{d E_{i} E_{i}^{d-3}}{(2 \pi)^{d-2}}\left|\mathcal{M}_{m}^{a b}(\{\underline{p}\})\right\rangle\left\langle\mathcal{M}_{m}^{a b}(\{\underline{p}\})\right|(2 \pi)^{d} \delta\left(Q-\sum_{i=1}^{m} E_{i}\right) \delta^{(d-1)}\left(\vec{p}_{\text {tot }}\right) \Theta_{\text {in }}(\{\underline{p}\})$
density matrix involving hard-scattering amplitude in color space
\Rightarrow new perspective to think about non-global observables

THEORY OF NON-GLOBAL LHC OBSERVABLES

SCET factorization theorem

$$
\begin{aligned}
& \sigma_{2 \rightarrow M}\left(Q, Q_{0}\right)=\sum_{\substack{\text { T. } \\
\text { T. Becher, M. Neubert, D. Shao (2021) }}} \int d x_{1} d x_{2} \sum_{m=2+M}^{\infty}\left\langle\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu\right)\right\rangle \\
& \text { [see also: T. Becher, M. Neubert, L. Rothen, D. Shao(2015, 2016)] }
\end{aligned}
$$

Renormalization-group equation:

$$
\mu \frac{d}{d \mu} \mathcal{H}_{l}^{a b}(\{\underline{n}\}, Q, \mu)=-\sum_{m \leq l} \mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \boldsymbol{\Gamma}_{m l}^{H}(\{\underline{n}\}, Q, \mu)
$$

 infinite space of parton multiplicities

All-order summation of large logarithmic corrections, including the super-leading logarithms!

RESUMMATION OF SUPER-LEADING LOGARITHMS

Evaluate factorization theorem at low scale $\mu_{s} \sim Q_{0}$

- Low-energy matrix element:

$$
\mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu_{s}\right)=f_{a / p}\left(x_{1}\right) f_{b / p}\left(x_{2}\right) \mathbf{1}+\mathcal{O}\left(\alpha_{\mathbf{s}}\right)
$$

- Hard-scattering functions:

$$
\mathcal{H}_{m}^{a b}\left(\{\underline{n}\}, Q, \mu_{s}\right)=\sum_{l \leq m} \mathcal{H}_{l}^{a b}(\{\underline{n}\}, Q, Q) \mathbf{P} \exp \left[\int_{\mu_{s}}^{Q} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{l m}
$$

- Expanding the solution in a power series generates arbitrarily high parton multiplicities starting from the $2 \rightarrow M$ Born process

RESUMMATION OF SUPER-LEADING LOGARITHMS

Evaluate factorization theorem at low scale $\mu_{s} \sim Q_{0}$

- Anomalous-dimension matrix:

$$
\boldsymbol{\Gamma}^{H}=\frac{\alpha_{s}}{4 \pi}\left(\begin{array}{ccccc}
\boldsymbol{V}_{2+M} & \boldsymbol{R}_{2+M} & 0 & 0 & \cdots \\
0 & \boldsymbol{V}_{2+M+1} & \boldsymbol{R}_{2+M+1} & 0 & \cdots \\
0 & 0 & \boldsymbol{V}_{2+M+2} & \boldsymbol{R}_{2+M+2} & \cdots \\
0 & 0 & 0 & \boldsymbol{V}_{2+M+3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- Action on hard functions:

RESUMMATION OF SUPER-LEADING LOGARITHMS

Evaluate factorization theorem at low scale $\mu_{s} \sim Q_{0}$

- Anomalous-dimension matrix:

$$
\boldsymbol{\Gamma}^{H}=\frac{\alpha_{s}}{4 \pi}\left(\begin{array}{ccccc}
\boldsymbol{V}_{2+M} & \boldsymbol{R}_{2+M} & 0 & 0 & \cdots \\
0 & \boldsymbol{V}_{2+M+1} & \boldsymbol{R}_{2+M+1} & 0 & \cdots \\
0 & 0 & \boldsymbol{V}_{2+M+2} & \boldsymbol{R}_{2+M+2} & \cdots \\
0 & 0 & 0 & \boldsymbol{V}_{2+M+3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

- Virtual and real contributions contain collinear singularities, which must be regularized and subtracted

$$
\boldsymbol{\Gamma}^{H}\left(\xi_{1}, \xi_{2}\right)=\delta\left(1-\xi_{1}\right) \delta\left(1-\xi_{2}\right) \boldsymbol{\Gamma}_{\text {soft / soft-collinear part }}^{S}+\boldsymbol{\Gamma}_{1}^{C}\left(\xi_{1}\right) \delta\left(1-\xi_{2}\right)+\delta\left(1-\xi_{1}\right) \boldsymbol{\Gamma}_{2}^{C}\left(\xi_{2}\right)
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

Detailed structure of the soft anomalous-dimension coefficients
Glauber phase

$$
\left.\begin{array}{l}
\boldsymbol{V}_{m}=\overline{\boldsymbol{V}}_{m}+\boldsymbol{V}^{G}+\sum_{i=1,2} \boldsymbol{V}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}} \\
\boldsymbol{R}_{m}=\overline{\boldsymbol{R}}_{m}+\sum_{i=1,2} \boldsymbol{R}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}
\end{array}\right\} \boldsymbol{\Gamma}=\overline{\boldsymbol{\Gamma}}+\boldsymbol{V}^{G}+\boldsymbol{\Gamma}^{c} \ln \frac{\mu^{2}}{\hat{s}}
$$

where:

$$
\left.\begin{array}{rl}
\boldsymbol{V}^{G} & =-8 i \pi\left(\boldsymbol{T}_{1, L} \cdot \boldsymbol{T}_{2, L}-\boldsymbol{T}_{1, R} \cdot \boldsymbol{T}_{2, R}\right) \quad \text { Coulomb (Glauber) phase } \\
\boldsymbol{V}_{i}^{c} & =4 C_{i} \mathbf{1} \\
\boldsymbol{R}_{i}^{c} & =-4 \boldsymbol{T}_{i, L} \circ \boldsymbol{T}_{i, R} \delta\left(n_{k}-n_{i}\right)
\end{array}\right\} \quad \text { soft \& collinear terms }
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

Detailed structure of the soft anomalous-dimension coefficients

$$
\left.\begin{array}{l}
\boldsymbol{V}_{m}=\overline{\boldsymbol{V}}_{m}+\boldsymbol{V}^{G}+\sum_{i=1,2} \boldsymbol{V}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}} \\
\boldsymbol{R}_{m}=\overline{\boldsymbol{R}}_{m}+\sum_{i=1,2} \boldsymbol{R}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}
\end{array}\right\} \begin{gathered}
\boldsymbol{\Gamma}=\overline{\boldsymbol{\Gamma}}+\boldsymbol{V}^{G}+\boldsymbol{\Gamma}^{c} \ln \frac{\mu^{2}}{\hat{s}} \\
\text { soft emission } \quad \text { soft \& collinear emission }
\end{gathered}
$$

where:

RESUMMATION OF SUPER-LEADING LOGARITHMS

Detailed structure of the soft anomalous-dimension coefficients

$$
\left.\begin{array}{l}
\boldsymbol{V}_{m}=\overline{\boldsymbol{V}}_{m}+\boldsymbol{V}^{G}+\sum_{i=1,2} \boldsymbol{V}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}} \\
\boldsymbol{R}_{m}=\overline{\boldsymbol{R}}_{m}+\sum_{i=1,2} \boldsymbol{R}_{i}^{c} \ln \frac{\mu^{2}}{\hat{s}}
\end{array}\right\} \underset{\text { softemission }}{\boldsymbol{\Gamma}=\overline{\boldsymbol{\Gamma}}+\boldsymbol{V}^{G}+\left.\boldsymbol{\Gamma}^{c} \ln \ln ^{\frac{\mu^{2}}{\hat{s}}}\right|_{\text {inear emission }}}
$$

where:

RESUMMATION OF SUPER-LEADING LOGARITHMS

SLLs arise from the terms in $\mathbf{P} \exp \left[\int_{\mu_{s}}^{Q} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{l m}$ with the highest number of insertions of $\Gamma \mathrm{c}$

- Three properties simplify the calculation:
- color coherence in absence of Glauber phases (sum of soft emissions off collinear partons has same effect as soft emission of parent parton):

$$
\mathcal{H}_{m} \boldsymbol{\Gamma}^{c} \overline{\boldsymbol{\Gamma}}=\mathcal{H}_{m} \overline{\boldsymbol{\Gamma}} \boldsymbol{\Gamma}^{c}
$$

- collinear safety (singularities from real and virtual emissions cancel):

$$
\left\langle\mathcal{H}_{m} \boldsymbol{\Gamma}^{c} \otimes \mathbf{1}\right\rangle=0
$$

- cyclicity of the trace:

$$
\left\langle\mathcal{H}_{m} \boldsymbol{V}^{G} \otimes \boldsymbol{1}\right\rangle=0
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

SLLs arise from the terms in $\mathbf{P} \exp \left[\int_{\mu_{s}}^{Q} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\{\underline{n}\}, Q, \mu)\right]_{l m}$ with the highest number of insertions of $\Gamma \mathrm{c}$

- Under color trace, insertions of Γ_{c} are non-zero only if they come in conjunction with (at least) two Glauber phases and one $\bar{\Gamma}$
- Relevant color traces at $\mathcal{O}\left(\alpha_{s}^{n+3} L^{2 n+3}\right)$:

$$
C_{r n}=\left\langle\mathcal{H}_{2 \rightarrow M}\left(\boldsymbol{\Gamma}^{c}\right)^{r} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{n-r} \boldsymbol{V}^{G} \overline{\boldsymbol{\Gamma}} \otimes \mathbf{1}\right\rangle
$$

- Kinematic information contained in $(M+1)$ angular integrals from $\bar{\Gamma}$:

$$
J_{j}=\int \frac{d \Omega\left(n_{k}\right)}{4 \pi}\left(W_{1 j}^{k}-W_{2 j}^{k}\right) \Theta_{\text {veto }}\left(n_{k}\right) ; \quad \text { with } \quad W_{i j}^{k}=\frac{n_{i} \cdot n_{j}}{n_{i} \cdot n_{k} n_{j} \cdot n_{k}}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result for $2 \rightarrow M$ hard processes

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

Basis of 10 color structures:

$$
\begin{array}{ll}
\boldsymbol{O}_{1}^{(j)}=f_{a b e} f_{c d e} \boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\} \boldsymbol{T}_{j}^{d}-(1 \leftrightarrow 2) & \boldsymbol{S}_{1}=f_{a b e} f_{c d e}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d}\right\} \\
\boldsymbol{O}_{2}^{(j)}=d_{\text {ade }} d_{b c e} \boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\} \boldsymbol{T}_{j}^{d}-(1 \leftrightarrow 2) & \boldsymbol{S}_{2}=d_{a d e} d_{b c e}\left\{\boldsymbol{T}_{1}^{b}, \boldsymbol{T}_{1}^{c}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{d}\right\} \\
\boldsymbol{O}_{3}^{(j)}=\boldsymbol{T}_{2}^{a}\left\{\boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b}\right\} \boldsymbol{T}_{j}^{b}-(1 \leftrightarrow 2) & \boldsymbol{S}_{3}=d_{a d e} d_{b c e}\left[\boldsymbol{T}_{2}^{a}\left(\boldsymbol{T}_{1}^{b} \boldsymbol{T}_{1}^{c} \boldsymbol{T}_{1}^{d}\right)_{+}+(1 \leftrightarrow 2)\right] \\
\boldsymbol{O}_{4}^{(j)}=2 C_{1} \boldsymbol{T}_{2} \cdot \boldsymbol{T}_{j}-2 C_{2} \boldsymbol{T}_{1} \cdot \boldsymbol{T}_{j} & \boldsymbol{S}_{4}=\left\{\boldsymbol{T}_{1}^{a}, \boldsymbol{T}_{1}^{b}\right\}\left\{\boldsymbol{T}_{2}^{a}, \boldsymbol{T}_{2}^{b}\right\} \\
& \boldsymbol{S}_{5}=\boldsymbol{T}_{1} \cdot \boldsymbol{T}_{2} \\
& \boldsymbol{S}_{6}=\mathbf{1}
\end{array}
$$

FACTORIZATION OF NON-GLOBAL LHC OBSERVABLES

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result for $2 \rightarrow M$ hard processes

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

Basis of 10 color structures:
T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result for $2 \rightarrow M$ hard processes

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

Basis of 10 color structures:

$$
\begin{aligned}
& c_{1}^{(r)}=2^{r-1}\left[\left(3 N_{c}+2\right)^{r}+\left(3 N_{c}-2\right)^{r}\right] \\
& c_{2}^{(r)}=2^{r-2} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}-\frac{\left(2 N_{c}\right)^{r+1}}{N_{c}^{2}-4}\right] \\
& c_{3}^{(r)}=2^{r-1}\left[\left(3 N_{c}+2\right)^{r}-\left(3 N_{c}-2\right)^{r}\right] \\
& c_{4}^{(r)}=2^{r-1}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+1}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-1}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& d_{1}^{(r)}= 2^{3 r-1}\left[\left(N_{c}+1\right)^{r}+\left(N_{c}-1\right)^{r}\right]-2^{r-1}\left[\left(3 N_{c}+2\right)^{r}+\left(3 N_{c}-2\right)^{r}\right] \\
& d_{2}^{(r)}= 2^{3 r-2} N_{c}\left[\frac{\left(N_{c}+1\right)^{r}}{N_{c}+2}+\frac{\left(N_{c}-1\right)^{r}}{N_{c}-2}\right]-2^{r-2} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}\right] \\
& d_{3}^{(r)}= 2^{r-1} N_{c}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+2}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-2}-\frac{\left(2 N_{c}\right)^{r+1}}{N_{c}^{2}-4}\right] \\
& d_{4}^{(r)}= 2^{3 r-1}\left[\left(N_{c}+1\right)^{r}-\left(N_{c}-1\right)^{r}\right]-2^{r-1}\left[\left(3 N_{c}+2\right)^{r}-\left(3 N_{c}-2\right)^{r}\right] \\
& d_{5}^{(r)}= 2^{r}\left(C_{1}+C_{2}\right)\left[\frac{N_{c}+2}{N_{c}+1}\left(3 N_{c}+2\right)^{r}-\frac{N_{c}-2}{N_{c}-1}\left(3 N_{c}-2\right)^{r}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right] \\
&-\frac{2^{r-1} N_{c}}{3}\left[\left(N_{c}+4\right)\left(3 N_{c}+2\right)^{r}+\left(N_{c}-4\right)\left(3 N_{c}-2\right)^{r}-\left(2 N_{c}\right)^{r+1}\right] \\
& d_{6}^{(r)}= 2^{3 r+1} C_{1} C_{2}\left[\left(N_{c}+1\right)^{r-1}+\left(N_{c}-1\right)^{r-1}\right]\left(1-\delta_{r 0}\right) \\
&-2^{r+1} C_{1} C_{2}\left[\frac{\left(3 N_{c}+2\right)^{r}}{N_{c}+1}+\frac{\left(3 N_{c}-2\right)^{r}}{N_{c}-1}-\frac{2 N_{c}^{r+1}}{N_{c}^{2}-1}\right] \\
& \text { JGU Mainz }
\end{aligned}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

General result for $2 \rightarrow M$ hard processes

$$
C_{r n}=-256 \pi^{2}\left(4 N_{c}\right)^{n-r}\left[\sum_{j=3}^{M+2} J_{j} \sum_{i=1}^{4} c_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{O}_{i}^{(j)}\right\rangle-J_{2} \sum_{i=1}^{6} d_{i}^{(r)}\left\langle\mathcal{H}_{2 \rightarrow M} \boldsymbol{S}_{i}\right\rangle\right]
$$

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

- Series of SLLs, starting at 3-loop order:

$$
\sigma_{\mathrm{SLL}}=\sigma_{\mathrm{Born}} \sum_{n=0}^{\infty}\left(\frac{\alpha_{s}}{4 \pi}\right)^{n+3} L^{2 n+3} \frac{(-4)^{n} n!}{(2 n+3)!} \sum_{r=0}^{n} \frac{(2 r)!}{4^{r}(r!)^{2}} C_{r n}
$$

- Reproduces all that is known about SLLs (and much more...)

RESUMMATION OF SUPER-LEADING LOGARITHMS

Contribution to partonic cross sections

- Infinite series can be expressed in closed form in terms of a prefactor times Kampé de Fériet functions $\Sigma\left(v_{i}, w\right)$ with $w=\frac{N_{c} \alpha_{s}}{\pi} L^{2}$ and

$$
v_{0}=0, \quad v_{1}=\frac{1}{2}, \quad v_{2}=1, \quad v_{3,4}=\frac{3 N_{c} \pm 2}{2 N_{c}}, \quad v_{5,6}=\frac{2\left(N_{c} \pm 1\right)}{N_{c}}
$$

RESUMMATION OF SUPER-LEADING LOGARITHMS

Contribution to partonic cross sections

- Infinite series can be expressed in closed form in terms of a prefactor times Kampé de Fériet functions $\Sigma\left(v_{i}, w\right)$ with $w=\frac{N_{c} \alpha_{s}}{\pi} L^{2}$ and

$$
v_{0}=0, \quad v_{1}=\frac{1}{2}, \quad v_{2}=1, \quad v_{3,4}=\frac{3 N_{c} \pm 2}{2 N_{c}}, \quad v_{5,6}=\frac{2\left(N_{c} \pm 1\right)}{N_{c}}
$$

Asymptotic behavior for $w \gg 1$:
$\Sigma_{0}(w)=\frac{3}{2 w}\left(\ln (4 w)+\gamma_{E}-2\right)+\frac{3}{4 w^{2}}+\mathcal{O}\left(w^{-3}\right)$
$\Sigma(v, w)=\frac{3 \arctan (\sqrt{v-1})}{\sqrt{v-1} w}-\frac{3 \sqrt{\pi}}{2 \sqrt{v} w^{3 / 2}}+\mathcal{O}\left(w^{-2}\right)$
\Rightarrow much slower fall-off than Sudakov
form factors $\sim e^{-c w}$

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

Partonic channels contributing to $p p \rightarrow 2$ jets (gap between jets)

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

Partonic channels contributing to $p p \rightarrow \mathbf{2}$ jets (gap between jets)

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

Partonic channels contributing to $p p \rightarrow \mathbf{2}$ jets (gap between jets)

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

Partonic channels contributing to $p p \rightarrow \mathbf{2}$ jets (gap between jets)

T. Becher, M. Neubert, D. Shao, M. Stillger (2023)

GLAUBER SERIES

Structure of the cross section

- We found:

$$
\sigma \sim \sum_{n=0}^{\infty}\left[c_{0, n}\left(\frac{\alpha_{s}}{\pi} L\right)^{n}+c_{1, n}\left(\frac{\alpha_{s}}{\pi} L\right)\left(\frac{\alpha_{s}}{\pi} i \pi L\right)^{2}\left(\frac{\alpha_{s}}{\pi} L^{2}\right)^{n}+\ldots\right]
$$

- Introduce two $O(1)$ parameters:

$$
w=\frac{N_{c} \alpha_{s}(\bar{\mu})}{\pi} L^{2}, \quad w_{\pi}=\frac{N_{c} \alpha_{s}(\bar{\mu})}{\pi} \pi^{2}
$$

- Including multiple Glauber insertions:

$$
\sigma^{\mathrm{SLL}+\mathrm{G}} \sim \frac{\alpha_{s} L}{\pi N_{c}} \sum_{\ell=1}^{\infty} \sum_{n=0}^{\infty} c_{\ell, n} w_{\pi}^{\ell} w^{n+\ell}
$$

- Relevant color traces:

$$
C_{\{[\underline{ } \ell}^{\ell} \equiv\left\langle\mathcal{H}_{2 \rightarrow M}\left(\boldsymbol{\Gamma}^{c}\right)^{r_{1}} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{r_{2}} \boldsymbol{V}^{G} \ldots\left(\boldsymbol{\Gamma}^{c}\right)^{r_{2 \ell-1}} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{r_{2 l} e} \boldsymbol{V}^{G} \overline{\boldsymbol{\Gamma}}\right\rangle
$$

GLAUBER SERIES

Structure of the cross section

- Including multiple Glauber insertions:

$$
\sigma^{\mathrm{SLL}+\mathrm{G}} \sim \frac{\alpha_{s} L}{\pi N_{c}} \sum_{\ell=1}^{\infty} \sum_{n=0}^{\infty} c_{\ell, n} w_{\pi}^{\ell} w^{n+\ell}
$$

- Relevant color traces:

$$
C_{\{\underline{\underline{r}}\}}^{\ell} \equiv\left\langle\mathcal{H}_{2 \rightarrow M}\left(\boldsymbol{\Gamma}^{c}\right)^{r_{1}} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{r_{2}} \boldsymbol{V}^{G} \ldots\left(\boldsymbol{\Gamma}^{c}\right)^{r_{2 \ell-1}} \boldsymbol{V}^{G}\left(\boldsymbol{\Gamma}^{c}\right)^{r_{2 \ell}} \boldsymbol{V}^{G} \overline{\boldsymbol{\Gamma}}\right\rangle
$$

- These traces can be calculated for arbitrary exponents r_{i} in terms of 4 ($q q, \bar{q} \bar{q}, q \bar{q}$ scattering), 13 ($g g$ scattering), and 11 ($q g, \bar{q} g$ scattering) basis operators, instead of 10 for $\ell=1 \quad \mathrm{P} . \mathrm{B}$ ber, P. Hager, M . . Neubert, M . Stillger, x . Xu (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

Impact on SLL resummation is small for quark-initiated processes ...

P. Böer, M. Neubert, M. Stillger (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

Impact on SLL resummation is small for quark-initiated processes ...

P. Böer, M. Neubert, M. Stillger (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

... by can be sizable for gluon-initiated processes

P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2023)

PHENOMENOLOGICAL IMPACT (PARTON LEVEL)

... by can be sizable for gluon-initiated processes

P. Böer, P. Hager, M. Neubert, M. Stillger, X. Xu (2023)

HIGHER-ORDER ASYMPTOTIC BEHAVIOR?

Standard Sudakov problems (with $\alpha_{s} L \sim 1$)

- RG-improved perturbation theory yields an expansion in exponent:

$$
\begin{aligned}
\sigma & \sim \sigma_{0} \exp \left[-\frac{1}{\alpha_{s}\left(\mu_{h}\right)} g_{0}\left(x_{s}\right)+g_{1}\left(x_{s}\right)+\alpha_{s}\left(\mu_{h}\right) g_{2}\left(x_{s}\right)+\ldots\right] \\
& =\sigma_{0} \exp \left[-\frac{1}{\alpha_{s}\left(\mu_{h}\right)} g_{0}\left(x_{s}\right)+g_{1}\left(x_{s}\right)\right]\left[1+\alpha_{s}\left(\mu_{h}\right) g_{2}\left(x_{s}\right)+\ldots\right]
\end{aligned}
$$

where $x_{s}=\alpha_{s}\left(\mu_{h}\right) / \alpha_{s}\left(\mu_{s}\right)$

- Terms that are formally $\gg \mathcal{O}(1)$ are under control, whereas this is not the case for the perturbative expansion:

$$
\sigma \sim \sigma_{0} \sum_{n_{1}=0}^{\infty} \sum_{n_{2}=0}^{\infty} \sum_{n_{3}=0}^{\infty} \frac{1}{n_{1}!n_{2}!n_{3}!}\left[-\frac{g_{0}\left(x_{s}\right)}{\alpha_{s}\left(\mu_{h}\right)}\right]^{n_{1}}\left[g_{1}\left(x_{s}\right)\right]^{n_{2}}\left[\alpha_{s}\left(\mu_{h}\right) g_{2}\left(x_{s}\right)\right]^{n_{3}}
$$

HIGHER-ORDER ASYMPTOTIC BEHAVIOR?

More complicated pattern for non-global observables (with $\alpha_{s} L \sim 1$)

- Resummation of SLLs $\sim\left(\alpha_{s} L\right)^{3}\left(\alpha_{s} L^{2}\right)^{n}$ at fixed coupling yields:

$$
\sigma \sim\left(\alpha_{s} L\right)^{3} \Sigma\left(v_{i}, w\right) \sim\left(\alpha_{s} L\right)^{3} \frac{\ln w}{w} \sim \alpha_{s} \ln \alpha_{s} \quad(\text { for } i=0)
$$

with $w=\frac{N_{c} \alpha_{s}}{\pi} L^{2} \sim 1 / \alpha_{s}$, which is not of exponential form

- Formally subleading-logs terms $\sim\left(\alpha_{S} L\right)^{4}\left(\alpha_{s} L^{2}\right)^{n}$ sum of to:

$$
\sigma \sim\left(\alpha_{s} L\right)^{4} G(w) \sim G\left(1 / \alpha_{s}\right)
$$

- How do we know these terms are really subleading?

HIGHER-ORDER ASYMPTOTIC BEHAVIOR?

Rewrite the evolution kernel for the SLLs

- Expand out all terms except the log-enhanced soft-collinear piece:

$$
\begin{aligned}
& \mathbf{U}\left(\mu_{h}, \mu_{s}\right)=\mathbf{P} \exp \left(\int_{\mu_{s}}^{\mu_{h}} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\mu)\right) \\
& \stackrel{\text { SLLs }}{=} \int_{\mu_{2}}^{\mu_{h}} \frac{d \mu_{1}}{\mu_{1}} \int_{\mu_{3}}^{\mu_{h}} \frac{d \mu_{2}}{\mu_{2}} \int_{\mu_{s}}^{\mu_{h}} \frac{d \mu_{3}}{\mu_{3}} \mathbf{U}_{c}\left(\mu_{h}, \mu_{1}\right) \mathbf{V}^{G}\left(\mu_{1}\right) \mathbf{U}_{c}\left(\mu_{1}, \mu_{2}\right) \mathbf{V}^{G}\left(\mu_{2}\right) \overline{\boldsymbol{\Gamma}}\left(\mu_{3}\right)
\end{aligned}
$$

where:

$$
\mathbf{U}_{c}\left(\mu_{1}, \mu_{2}\right)=\exp \left(\boldsymbol{\Gamma}^{c} \int_{\mu_{2}}^{\mu_{1}} \frac{d \mu}{\mu} \gamma_{\text {cusp }}(\mu) \ln \frac{\mu^{2}}{\mu_{h}^{2}}\right)
$$

HIGHER-ORDER ASYMPTOTIC BEHAVIOR?

Rewrite the evolution kernel for the SLLs

- Expand out all terms except the log-enhanced soft-collinear piece:

$$
\begin{aligned}
& \mathbf{U}\left(\mu_{h}, \mu_{s}\right)=\mathbf{P} \exp \left(\int_{\mu_{s}}^{\mu_{h}} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\mu)\right) \\
& \stackrel{\text { SLLs }}{=} \int_{\mu_{2}}^{\mu_{h}} \frac{d \mu_{1}}{\mu_{1}} \int_{\mu_{3}}^{\mu_{h}} \frac{d \mu_{2}}{\mu_{2}} \int_{\mu_{s}}^{\mu_{h}} \frac{d \mu_{3}}{\mu_{3}} \mathbf{U}_{c}\left(\mu_{h}, \mu_{1}\right) \mathbf{V}^{G}\left(\mu_{1}\right) \mathbf{U}_{c}\left(\mu_{1}, \mu_{2}\right) \mathbf{V}^{G}\left(\mu_{2}\right) \overline{\boldsymbol{\Gamma}}\left(\mu_{3}\right)
\end{aligned}
$$

where:

$$
\mathbf{U}_{c}\left(\mu_{1}, \mu_{2}\right)=\exp \left(\boldsymbol{\Gamma}^{c} \int_{\mu_{2}}^{\mu_{1}} \frac{d \mu}{\mu} \gamma_{\text {cusp }}(\mu) \ln \frac{\mu^{2}}{\mu_{h}^{2}}\right)
$$

For quark-initiated scattering:

$$
\boldsymbol{\Gamma}^{c}=\left(\begin{array}{ccccc}
N_{c} & 0 & 0 & 0 & 0 \\
0 & N_{c} & 0 & 0 & 0 \\
0 & 0 & \frac{N_{c}}{2} & 0 & 0 \\
0 & 0 & -N_{c} & N_{c} & 0 \\
0 & 0 & -C_{F} N_{c} & 0 & 0
\end{array}\right)
$$

HIGHER-ORDER ASYMPTOTIC BEHAVIOR?

Rewrite the evolution kernel for the SLLs

- Expand out all terms except the log-enhanced soft-collinear piece:

$$
\begin{aligned}
& \mathbf{U}\left(\mu_{h}, \mu_{s}\right)=\mathbf{P} \exp \left(\int_{\mu_{s}}^{\mu_{h}} \frac{d \mu}{\mu} \boldsymbol{\Gamma}^{H}(\mu)\right) \\
& \stackrel{\text { SLLs }}{=} \int_{\mu_{2}}^{\mu_{h}} \frac{d \mu_{1}}{\mu_{1}} \int_{\mu_{3}}^{\mu_{h}} \frac{d \mu_{2}}{\mu_{2}} \int_{\mu_{s}}^{\mu_{h}} \frac{d \mu_{3}}{\mu_{3}} \mathbf{U}_{c}\left(\mu_{h}, \mu_{1}\right) \mathbf{V}^{G}\left(\mu_{1}\right) \mathbf{U}_{c}\left(\mu_{1}, \mu_{2}\right) \mathbf{V}^{G}\left(\mu_{2}\right) \overline{\boldsymbol{\Gamma}}\left(\mu_{3}\right)
\end{aligned}
$$

- Analogous relations hold for the Glauber series (more V^{G} factors) or other insertions of subleading parts of the anomalous dimension
- One scale integral for each insertion, suitable for numerical evaluation
- From asymptotic behavior of $\mathbf{U}_{c}\left(\mu_{1}, \mu_{2}\right)$ one can work out asymptotic behavior of the resummed series

EXPLORING UNCHARTERED TERRITORY

Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?
- Can factorization violations be understood in a quantitative way? At what scale (Q_{0} or Λ_{QCD}) do they occur?
- What are the implications for LHC phenomenology?
- Results very relevant for future improvements of parton showers with quantum interference

Thank you!

