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Background field QED

Familiar action for Dirac field Ψ(x) coupled to gauge potential A(x) = Aµ(x)dxµ:

S[Ψ, A] =

∫
dDx

[1
4
trF2 + Ψ̄

(
i /D −m

)
Ψ
]

(Dµ := ∂µ + ieAµ) .

Split gauge field into background + quantised photons,

eAµ(x) = aµ(x) + eA
γ
µ(x) .

[Sauter: Z . Phys. 69 (1931) 742, Heisenberg, Euler: Z. Phys. 98 11-12 (1936) 714, Schwinger: Phys. Rev. 82 (1951) 664 ...]

Laser background: high occupation coherent state =⇒ High intensity.

Aim: Quantise theory in the semi-classical background.

Two interactions between matter and photons:

−eΨ̄ /A
γ
Ψ

µ

−Ψ̄/aΨ

µ
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Furry picture

Laser interactions add coherently =⇒ background coupling αργ ≫ 1

Non-perturbative QFT at low energies!

In the Furry picture: background taken into account to all orders:

(
i/∂−/a(x)−m

)
Ψ(x) = 0 , S(x′, x) =

〈
x′
∣∣i(/̂p−/a−m)−1∣∣x〉 . [Furry: Phys. Rev. 81 (1951) 115]

...∑=

Background enhances vertex coupling: −ieγµ → −iξγµ (ξ ∼ √
αργ)

Note: still perturbative in α for quantised photons – but see later!
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Nonlinearity parameters

Strong Field QED (SFQED) parameterised by two nonlinearity parameters:

“Intensity parameter” – classical nonlinearity parameter, ξ or a0:

ξ =
eEλC
ℏω

≈
mc2

ℏω
E

Ecr

Work done by background over 1 λC (units of photon energy ℏω).

Quantum nonlinearity parameter, χ:

χ =
eEγλC
mc2

≈
E

Ecr

∣∣∣
Rest

Work done by background over 1 λC (units of electron rest mass energy).

Critical field strength: Ecr = m2c3

eℏ ∼ 1.3× 1018 V/m. [Sauter, Heisenberg, Euler, Schwinger]

ξ ∼ O(1) =⇒ high density of interactions with background

χ ∼ O(1) =⇒ non-perturbative quantum processes become likely

James P. Edwards Strong Field QED
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Plane waves – classical dynamics

Plane wave background – “good” approximation to field of intense laser.

Plane wave characterised by null vector, nµ, defining lightfront time:

x+ = n · x , n2 = 0 (1)

Background gauge potential aµ = aµ(x+) = δµ⊥

∫ x+

−∞
dφ eE⊥(φ).

Field invariants vanish: F = 1
4 tr(f

2) = 0 and G = 1
4 tr(f · f̃) = 0

E2 −B2 = 0 E ·B = 0

Classical dynamics – Lorentz force equation in lightfront time:

pµ(φ) = Pµ − aµ(φ) +
2P · a(φ)− a2(φ)

2P+
nµ pµ = mẋµ , p2 = m2 .

p+ = p+ = const is conserved...

Canonical momentum πµ = pµ + aµ:
Three components π+, π⊥ conserved =⇒ integrable!
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Plane waves – Volkov solutions

Plane wave background – “good” approximation to field of intense laser.

Plane wave characterised by null vector, nµ, defining lightfront time:

x+ = n · x , n2 = 0 (1)

Quantum dynamics – Volkov wavefunctions: [Wolkow: Z. Phys. 94 (1935) 250]

Ψp,s(x) =
(
1 +

/n/a(x+)

2p+

)
us(p) e

−ip·x−i
∫ x+

−∞ dφ
2p·a(φ)−a2(φ)

2p+

(single particle wavefunctions)

Quantum dynamics – Volkov propagator: S(x′, x) = xx′

= i

∫
d4p

(2π)4

(
1+

/n/a(x′+)

2p+

) /p+m

p2 −m2 + iϵ

(
1+

/a(x+)/n

2p+

)
e
−ip·(x′−x)−i

∫ x′+
x+

dφ
2p·a(φ)−a2(φ)

2p+

Early work with monochromatic plane waves misses non-trivial effects from beam profile:

Finite duration / transverse structure etc.
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High intensity laser facilities

Probes of SFQED – often scatter electrons off intense laser pulses (higher χ).
1 e− beam sourced from ordinary accelerator: high precision measurements

E144 at SLAC (46GeV); E320 at SLAC (13GeV); LUXE at DESY (16.5GeV).

2 e− beam from laser wakefield acceleration: facilities probing higher ξ
CoRELS; ELI; Apollon; Vulcan; SEL; ZEUS; XCELS O(10sMeV)−O(10sGeV)

LWFA: Laser pulse initiates an electron plasma (ionisation) wave which produces “bubbles” with extremely
high longitudinal electric fields (cτ < λp). Electrons accelerated by “surfing” on the plasma wave.

[ Litos et al.: Nature 515 (2014), 92]
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Intense laser facilities – 2009

Significant growth in intense laser facilities (partly driven by CPA [Strickland, Mourou]).

[ICUIL: www.icuil.org]
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Intense laser facilities – 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

[ICUIL: www.icuil.org]
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Intense laser facilities – 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

LUXE: 40TW fs laser (800nm Ti:sapp
16.5GeV electrons from EU-XFEL
Secondary GeV photon beam
ξ = 9, χ = 1.5. 

Upgrade: 350TW, ξ = 23.5, χ = 4.5

[ICUIL: www.icuil.org]
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Intense laser facilities – 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

Evolution of laser intensity. Future experiment estimations included. [ Yakovlev: Quant. Electron. 44 (2014), 393]
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Intense laser facilities – 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

Laserscape for existing and upcoming laser-particle experiments.
For plane wave η = χ

ξ – CoM energy for photon-photon collision! [ Fedotov et al.: Phys. Rep. 1010 (2023), 1]
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Effective action

One loop effective action in arbitrary background:

eiΓ[a] = Det
[
i/∂ − /a−m

]
(2)

Vacuum bubbles contain field dependent physics:

out
〈
0
∣∣ 0 〉in =

∫
DA

∫
DΨ̄

∫
DΨ e

i
ℏS[A,Ψ] ≈ Det

(
i /D −m

)
.

Vacuum persistence probability
∣∣
out

〈
0
∣∣0〉in∣∣2 = e−2IΓ[a] < 1 =⇒ vacuum decay!

Decay rate ∼ 2IΓ[a] related to pair creation by optical theorem: [Sauter, Schwinger]

...2I

2

This is the famous Schwinger mechanism.
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Euler-Heisenberg Lagrangian

One loop effective action in arbitrary background:

eiΓ[a] =
1

2
Det

[
(∂ − a)2 +m2 +

i

2
fµνσ

µν] (2)

First quantised representation: [Strassler: Nucl. Phys. B385 (1992), 45, Schubert: Phys. Rept. 355 (2001), 73 ]

Γ[a] = −
1

2

∫ ∞

0

dT

T
e−im

2T
∮
PBC

Dx(τ)

∮
ABC

Dψ(τ) e
i
ℏSWL[x,ψ] .

Worldline action SWL[x, ψ] = −
∫ T

0
dτ

[
ẋ2

4 + i
2ψ · ψ̇+ a(x(τ)) · ẋ(τ)+ iψ(τ) · f(x(τ)) ·ψ(τ)

]

Constant EM fields – solution for effective Lagrangian:

L(1)
EH = −2

∫ ∞

0

dT

T
(4πiT )−

D
2 e−im

2T det−
1
2

[ tanh(fT )
fT

]
[Heisenberg, Euler]

Electric field – poles at eET = (2n+ 1)π2 produce imaginary part

2IL(1)
EH =

(eE)2

(2π)3

∞∑
n=1

1

n2
e−n

πm2

eE . [Schwinger, N.B. Nikishov Zh. Eksp. Teor. Fiz. 57 (1969) 1210]
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Tree level scattering

First order processes (e.g. plane wave background) – one vertex:

Nonlinear Compton Nonlinear Breit-Wheeler Photon absorption Pair annihilation

Field induced: energy-momentum exchanged with background.

S-matrix S = −ie(2π)3
∫
du δ4(uωn−

∑
i pi

)
M(pi, u)

For nonlinear Compton, u = ℓ·p
ωq+

: [E-144: Phys. Rev. Lett. 76 (1996), 3116]

Feynman Rules:

M =

∫
d4x Ψ̄q(x) /ε(ℓ)eiℓ·xΨp(x) −→

∫
dφ ū(q(φ)) /ε(ℓ)u(p(φ)) e

i
ℏ

ℓ·p(φ)

ωq+ .

Frequency of outgoing photon: ω′(ℓ) = ωup+

(p+ωun)· ℓ
ℓ0

.
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Nonlinear Compton scattering

Differential cross section for e−(p) → e−(q) + γ(ℓ)

d3σ

ds d2r⊥
=

α

16π2m2η2
s

1− s

∣∣M∣∣2 , s =
q+

p+
, r⊥ =

q⊥
ms

.

For ξ ≫ 1, scattering rate has distinct scalings: [Nikishov, Ritus: Sov. Phys. JETP 19 (1964) 529]

σ/T ∼

αχ for χ≪ 1

αχ
2
3 for χ≫ 1

(3)

Differential spectrum, dσ
ds

, as a function of lightfront momentum transfer, s, (r⊥ = (0.5, 0)) with multiple Compton edges. [Fedotov et al.]
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Nonlinear Breit-Wheeler

Field assisted pair production: γ(ℓ) → e+(p) + e−(q) (from NLC by crossing)

M = −
∫
dφ ū(q(φ)) /ε(ℓ) ν(−p(φ)) e

−i ℓ·(−p)(φ)

ωq+ , s =
p+

ℓ+

Threshhold energy: ℓ+ uωn = p+ q =⇒ u > 2
η . [E-144: Phys. Rev. Lett. 79 (1997), 1626]

Linear regime: ξ ≪ 1 =⇒ 1 laser photon

Multi-photon regime: ξ ∼ 1 =⇒ n > 1 laser photons

Non-perturbative regime: ξ ≫ 1 =⇒ many laser photons

Production rate in intense plane wave: [Nikishov, Ritus: Sov. Phys. JETP 19 (1964) 529]

σ/T ∼

αe
− 8

3χ χ≪ 1

αχ
2
3 χ≫ 1

(4)

Finite pulse effects can have significant impact on pair creation rate.
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Trident process

Nonlinear trident is the 1 → 3 process e−(p) → e−(p1) + e−(p2) + e+(p3):

Internal photon conveniently taken in lightfront gauge:

Dµν(ℓ) =
−iLµν(ℓ)
ℓ2 + iϵ

, Lµν(ℓ) = gµν −
nµℓν + ℓµnν

ℓ+
.

On-shell / Off-shell split Lµν(ℓ) = Lµν(ℓ⋆)− ℓ2

ℓ+
nµnν :

Lµν(ℓ⋆) =⇒ Causal “2-step process”

ℓ2

ℓ+
nµnν Contact “1-step process”

[Ilderton: Phys. Rev. Lett. 106 (2011) 020404]
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Double nonlinear Compton

Taken as a 1 → 3 process: e−(p) → e−(p1) + γ(p2) + γ(p3)

Lightfront integrals carried out numerically for plane wave background:
ξ ∼ 1 [Seipt, Kämpfer: Phys. Rev. D 85 (2012) 101701], ξ ≫ 1 [Mackenroth, Di Piazza: Phys. Rev. Lett. 110 (7) (2013) 070402]

Differential cross section for single & double NLC at fixed emitted photon frequency. [Seipt, Kämpfer]
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Open worldlines

Higher multiplicity amplitudes involve multiple highly oscillatory integrals
Locally Constant Field Approximation (LCFA): [Ilderton, King, Seipt: Phys. Rev. A 99 (4) (2019) 042121]

Integrate rate in crossed constant fields (relativistic electron sees this!).

Locally Monochromatic Field Approximation (LMA): [Heinzl, King, Macleod: Phys. Rev. A 102 (2020) 063110]

Integrate rate in monochromatic field over pulse envelope

Often modelled as chains of first-order, two-step processes – ideal for simulation

Worldline formalism extended: open lines =⇒ N-photon tree level amplitudes

DN ∼
∫ ∞

0
dT e−im

2T
∫

Dx(τ)V (k1, ε1) . . . V (kN , εN ) e
i
ℏ
∫ T
0 dτ [− ẋ2

4 −a(x)·ẋ(τ)] (5)

Photon vertex operator: V (k, ε) =

∫ T

0
dτ ε · ẋ eik·x(τ).

[Ahmadiniaz, JPE et al.: JHEP 08 (2020) 08, 049 & JHEP 01 (2022) 050]

[Ahmad et al.: Nucl.Phys.B 919 (2017) 9-24, Copinger, JPE et al.: 2311.14638 [hep-th]]
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Open worldlines

Higher multiplicity amplitudes involve multiple highly oscillatory integrals
Locally Constant Field Approximation (LCFA): [Ilderton, King, Seipt: Phys. Rev. A 99 (4) (2019) 042121]

Integrate rate in crossed constant fields (relativistic electron sees this!).

Locally Monochromatic Field Approximation (LMA): [Heinzl, King, Macleod: Phys. Rev. A 102 (2020) 063110]

Integrate rate in monochromatic field over pulse envelope

Often modelled as chains of first-order, two-step processes – ideal for simulation

Worldline formalism extended: open lines =⇒ N-photon tree level amplitudes
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Vacuum polarisation

Loop effects encode non-trivial quantum vacuum: quantum fluctuations.

=

Photon polarisation tensor, Πµν(a) =⇒ response of probe photon: [Toll: Thesis (1952)]

Πµν(ℓ, ℓ′|a) ∼ δ2Γ[a+Aγ ]

δA
γ
µ(ℓ)δA

γ
ν (ℓ

′)

∣∣∣
Aγ=0

≡

Vacuum birefringence: distinct dispersion relations for photon polarisations:

Linear polarisation n1,2(ℓ) ∼ 1 − 16π2α2c1,2
(ℓ·f)2

ℓ2m4 + . . ..

[Dinu et al.: Phys. Rev. D 89 (12) (2014) 125003, Macleod, JPE et al.: New J.Phys. 25 (2023) 9, 093002]

Helicity flip: genuine elastic scattering off background field.

[Delbrück: Z. Phys. 84 (1933), 144, Schumacher et al.: Phys. Lett. B 59 (1975), 134]

Lab experiments: PVLAS close to QED sensitivity [Della Valle et al.: Phys. Rept. 871 1–74]

HIBEF [Ahmadiniaz et al.: Phys. Rev. D 104 (2021), L011902]

SEL [Shen et al.: Plasma Phys. Control. Fusion 60 (2018), 044002]

Figure: Stokes parameter evolution encoding polarisation asymmetry (multiple
scattering expected if mean free path of the probe photon ≪ laser pulse length).

[Macleod, JPE et al.: New J.Phys. 25 (2023) 9, 093002]
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Light-by-light

External fields allow additional processes mediated by virtual loops:

1 → 1 scattering: elastic & inelastic [E320 and LUXE: Eur. Phys. J. ST 230 (2021), 2445]

Photon splitting in strong magnetic fields

[Adler: Annals Phys. 67 (1971) 599, Papanyan, Ritus: Sov. Phys. JETP 34 (6) (1972) 1195

Adler, Schubert: Phys. Rev. Lett. 77 (1996), 1695, Di Piazza et al.: Phys. Rev. A 76 (2007), 032103]

Light-by-light scattering enhancement

[Tennant: Phys. Rev. D 93 (12) (2016), 125032, Gies et al.: Phys. Rev. D 103 (7) (2021), 076009 ]

Low energy limit of four-photon amplitude more accessible:
1 Lowest order contribution to vacuum polarisation!

[Ahmadiniaz et al.: Phys. Rev. D 108 (2023) 7, 076005 and Ahmadiniaz et al.: Nucl.Phys.B 991 (2023) 116216]

2 Partially off-shell process detected at ATLAS

[Aaboud et al.: Nature Phys. 13 (9) (2017) 852, Aad, et al.: Phys. Rev. Lett. 123 (5) (2019) 052001]

3 Contributes to g-2 at L ⩾ 3 loop order
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Closed worldlines

First quantised approach also well-suited to calculating loop corrections:

Γ[a] = −
1

2

∫ ∞

0

dT

T
e−im

2T
∮
PBC

Dx(τ)

∮
ABC

Dψ(τ) e
i
ℏSWL[x,ψ] + Internal Photons .

1-loop effective action calculated in constant field [Schmidt, Schubert: Phys. Lett. B 318 (1993), 438]

Master Formulae for N-photon scattering [Reuter et al.:, Ann. Phys. (N.Y.) 259 (1997), 313]

Generalised to plane wave background only recently

[JPE, Schubert: Phys. Lett. B 822 (2021), 136696 and Schubert, Shaisultanov: Phys. Lett. B 843 (2023), 137969]

..

.
.

ε1

k1
ε2

ε3

ε4

ε5
ε6

εNk2

k3k3

k4
k5

k6

kN
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Euler-Heisenberg

Resurgence in higher-loop calculations of Euler-Heisenberg Lagrangian:

ΓEH[a] =

∫
dDxLEH(f2, f̃2, ∂2f2, . . .) .

For D = 4: Two-loops with zero derivatives [Ritus: Sov. Phys. JETP 42 (5) (1975) 774]

Known to one-loop at quadratic in derivatives

[Karbstein: JHEP 09 (2021) 070, Dunne, Schubert: Nucl. Phys. B 564 (2000) 591]

Higher-loop results for constant fields / self-dual fields

[Huet et al.: Adv. High Energy Phys. 2017 (2017) 6214341, Dunne, Schubert: Phys. Lett. B526 (2002), 55]

Three-loop results obtained in lower dimensions [Huet et al.: JHEP 03 (2019) 167]

Recent discovery: 1PR contributions to LEH in constant fields...
x0 x [Gies, Karbstein: JHEP 03 (2016)]

[Karbstein: JHEP 10 (2017) 075 ]

[JPE, Schubert: Nucl. Phys. B 923 (2017) 339]

[Ahmadiniaz, JPE et al.: Nucl. Phys. B 924 (2017) 377]

[Huet, JPE et al.: Nucl. Phys. B935 (2018) 19]

1PR contributions found to be dominant in strong field limit!

[Karbstein: Phys. Rev. Lett. 122 (21) (2019) 211602]
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Ritus-Narozhny Conjecture

Large ξ, χ limits of NLC & NLBW rates scale as αχ
2
3 .

General conjecture for crossed constant fields (LCFA):

α→ αχ
2
3 =⇒ Breakdown of strong field Furry expansion for large χ ≳ 1600.

[Ritus: Ann. Phys. 69 (2) (1972) 555, Narozhny: Phys. Rev. D21 (4) (1980) 1176]

Asymptotic results in CCF (1969-1980). From [Mironov et al.: Phys. Rev. D 102 (2020), 053005]

Already known not to hold in some processes away from CCF limit.

[Podszus, Di Piazza: Phys. Rev. D 99 (2019), 076004, Ilderton: Phys. Rev. D 100 (2019), 125018]

Even in CCF – not seen for inclusive observables [JPE, Ilderton: Phys. Rev. D 103 (2021) 1, 01600]
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Resummation

State of the art: all-orders resummation of vac. pol. “bubble diagrams”

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

Mass operator for on-shell incoming particle (maximal saturation)

One-loop vacuum polarisation known analytically in CCF
Part of it implies a running of electric charge (logarithmic in χ).

Strong field limit: each loop contributes factor ∝ αχ
2
3 .

At L ⩾ 1-loop order: bubble chain scales as χ−
1
3
(
αχ

2
3
)L.

Resummed result in non-pertrubative limit: dominant contributions scale as

χ−
1
3
(
αχ

2
3
) 3
2 and χ−

1
3
(
αχ

2
3
)2

Recent work validating treatment of vertex provided at one-loop order.

[Di Piazza, Lopez-Lopez: Phys. Rev. D 102 (7) (2020) 076018]
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Conclusion

Strong field QED – an open window onto nonlinear effects in QED!

Non-perturbative aspects of QED can be probed at relatively low energies by
enhancing vacuum coupling.

Main points:

1 Low order processes – already part of experimental searches

2 Higher multiplicity processes – relevant for cascades

3 Loop effects – expose nonlinear nature of quantum vacuum

4 Vacuum birefringence – target of upcoming laser experiments

An invitation:
Worldline Formalism – especially useful for studying higher order processes.
[JPE, Schubert: arXiv:1912.10004 [hep-th]]
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Not mentioned

Many other interesting aspects of this field:

Details beyond plane waves: non-null fields, focussing etc

Numerical simulations: Particle in Cell codes

Semi-classical approaches (worldline instantons)
Very useful for studying the effective action!

My key question:

¿Will we be able to probe non-perturbative effects like Schwinger pair creation?

¡Thank you for your attention!
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CPA

Chirped Pulse Amplification – 2018 Nobel Prize [Strickland, Mourou: Opt Commun. 56 (1985), 219.]

Figure: Schematic of CPA: ultra-short laser pulse amplified to PW level
[Science and Technology Review: LLNL, Sept 1985]
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Worldline Master Formulae

All multiplicity results obtained for tree level amplitudes:

Master formulae obtained in constant fields: [Ahmad et al.: Nucl.Phys.B 919 (2017) 9-24]

LSZ-amputated formulae obtained for plane waves: [Copinger, JPE et al.: 2311.14638 [hep-th]]

Note: Momentum and lightfront integrals =⇒ Schwinger proper time integrals!
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