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Background field QED

Familiar action for Dirac field ¥(z) coupled to gauge potential A(z) = Ay (z)dx*:

S[w, A] = /dDz Eter + U (i) — m) V] (Dpy = Oy + ieAy) .

@ Split gauge field into background + quantised photons,
eAy(x) = ap(v) + eA;‘Z(z) .

[Sauter: Z . Phys. 69 (1931) 742, Heisenberg, Euler: Z. Phys. 98 11-12 (1936) 714, Schwinger: Phys. Rev. 82 (1951) 664 ...]

@ Laser background: high occupation coherent state = High intensity.

James P. Edwards Strong Field QED



Introduction QED in EM backgrounds
experiments
im instabilit

Background field QED

Familiar action for Dirac field ¥(z) coupled to gauge potential A(z) = Ay (z)dx*:

S[w, A] = /dDz Eter + U (i) — m) V] (Dpy = Oy + ieAy) .

@ Split gauge field into background + quantised photons,
eAy(x) = ap(v) + eA;‘Z(z) .

[Sauter: Z . Phys. 69 (1931) 742, Heisenberg, Euler: Z. Phys. 98 11-12 (1936) 714, Schwinger: Phys. Rev. 82 (1951) 664 ...]

@ Laser background: high occupation coherent state = High intensity.

Aim: Quantise theory in the semi-classical background.

Two interactions between matter and photons:

3 A G —eU AW
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Furry picture

@ Laser interactions add coherently = background coupling apy > 1
Non-perturbative QFT at low energies!

@ In the Furry picture: background taken into account to all orders:

(i@—d(z)—m)¥(z) =0, S, z) = <m/}i(ﬁf¢fm)71 |) . [Fumy: Phys. Rev. 81 (1951) 115)
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@ Laser interactions add coherently = background coupling apy > 1
Non-perturbative QFT at low energies!

@ In the Furry picture: background taken into account to all orders:
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Furry picture

@ Laser interactions add coherently = background coupling apy > 1
Non-perturbative QFT at low energies!

@ In the Furry picture: background taken into account to all orders:

(i@—d(z)—m)¥(z) =0, S, z) = <z/}i(ﬁf¢fm)71 |) . [Fumy: Phys. Rev. 81 (1951) 115)

@ Background enhances vertex coupling: —iey* — —icy? (¢ ~ ary)

nyr 7

~ (15211

@ Note: still perturbative in « for quantised photons — but see later!
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Nonlinearity parameters

v
|

IRl
"Wy
Strong Field QED (SFQED) parameterised by two nonlinearity parameters:

@ ‘“Intensity parameter” — classical nonlinearity parameter, ¢ or ag:

eEXc - mc2 E
hw  hw FEer

Work done by background over 1 Ao (units of photon energy fw).
@ Quantum nonlinearity parameter, x:

eEvyA\¢e E

X = ~
mc2 FEcr

Rest

Work done by background over 1 Ao (units of electron rest mass energy).

aye . 2.3
Cr'tlcal fleld Stl’ength: Ecr = % ~ 1.3 % 1018 V/m [Sauter, Heisenberg, Euler, Schwinger]
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Nonlinearity parameters

Strong Field QED (SFQED) parameterised by two nonlinearity parameters:

@ ‘“Intensity parameter” — classical nonlinearity parameter, ¢ or ag:

eEXc - mc2 E
hw  hw FEer

Work done by background over 1 Ao (units of photon energy fw).
@ Quantum nonlinearity parameter, x:

_eEvy\¢ _E
T T Ea

mce Rest

Work done by background over 1 Ao (units of electron rest mass energy).

aye . 2.3
Cr'tlcal fleld Stl’ength: Ecr = % ~ 1.3 % 1018 V/m [Sauter, Heisenberg, Euler, Schwinger]

@ ¢~ O(1) = high density of interactions with background
@ x ~ O(1) = non-perturbative quantum processes become likely
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Plane waves — classical dynamics

Plane wave background — “good” approximation to field of intense laser.

@ Plane wave characterised by null vector, n,, defining lightfront time:

+
xr
Background gauge potential o), = au(z") =4, /_Oo doeE | (p).

e Field invariants vanish: 7= {tr(f2) =0 and ¢ = Jtr(f- f) =
EZ2-B2=0 E

James P. Edwards Strong Field QED



Introduction QED in EM backgrounds
experiments
im instabilit

Plane waves — classical dynamics

Plane wave background — “good” approximation to field of intense laser.

@ Plane wave characterised by null vector, n,, defining lightfront time:

+
xr
Background gauge potential o), = au(z") =4, /_Oo doeE | (p).

e Field invariants vanish: 7= tr(f2)=0and ¢ = Jtr(f- f) =0
EZ2-B2=0 E-B=0
@ Classical dynamics — Lorentz force equation in lightfront time:

2P - a(p) — a*(p)

2Pt ny Pp = My, pT=m-.

pu(w) = Pu —au(p) +

pT =pT = const is conserved...

@ Canonical momentum ;= py + au:
Three components =+, 71 conserved = integrable!
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Plane waves — Volkov solutions

Plane wave background — “good” approximation to field of intense laser.
@ Plane wave characterised by null vector, n,, defining lightfront time:

:r+:n-:v, n?=0 (1)
@ Quantum dynamics — Volkov wavefunctions: [Wolkow: Z. Phys. 94 (1935) 250]

2p-a(p) —a? ()

X et
Ups(@) = (1+ M( P T

(single particle wavefunctions)

@ Quantum dynamics — Volkov propagator: S(z/,z) = 2/s——xz

N !t 2peale)—a®(e)
. shet (' F) ptm dlatypy —iv (@ =) =i [ dp TS
o Z/ (2m)4 ( * 2pt )p2 2 +i€< + 2pt )e 2p

@ Early work with monochromatic plane waves misses non-trivial effects from beam profile:

Finite duration / transverse structure etc.
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High intensity laser facilities

Probes of SFQED — often scatter electrons off intense laser pulses (higher x).

© < beam sourced from ordinary accelerator: high precision measurements
E144 at SLAC (46GeV); E320 at SLAC (13GeV); LUXE at DESY (16.5GeV).
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High intensity laser facilities

Probes of SFQED — often scatter electrons off intense laser pulses (higher x).
© < beam sourced from ordinary accelerator: high precision measurements
E144 at SLAC (46GeV); E320 at SLAC (13GeV); LUXE at DESY (16.5GeV).

@ ¢ beam from laser wakefield acceleration: facilities probing higher ¢
CoRELS; ELI; Apollon; Vulcan; SEL; ZEUS; XCELS O(10s MeV) — 0(10s GeV)

410
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LWFA: Laser pulse initiates an electron plasma (ionisation) wave which produces “bubbles” with extremely
high longitudinal electric fields (¢t < XAp). Electrons accelerated by “surfing” on the plasma wave.
[ Litos et al.: Nature 515 (2014), 92]
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Intense laser facilities — 2009

Significant growth in intense laser facilities (partly driven by CPA [stickand, Mourou ).

2009 ULTRAHIGH INTENSITY LASER FACILITIES
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[ICUIL: www.icuil.org]
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Intense laser facilities — 2019

Significant growth in intense laser facilities (reaching multi-petawatt power)

2020 ULTRAHIGH INTENSITY LASER FACILITIES
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Intense laser facilities — 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).
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2020 ULTRAHIGH INTENSITY LASER FAclLlYlEsl

LUXE: 40TW fs laser (800nm Ti:sapp.
16.5GeV electrons from EU-XFEL

Secondary GeV photon beam
£ =9,%=15

Upgrade: 350TW, § = 235, x = 4.5
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Laser experiments

Intense laser facilities — 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

Quantum chromodynamics, 10%° W ecm™2

10" Nonlinear quantum electrodynamics, Eed, = 2m,c

D
g 1 PeV,
E Ultra-relativistic optics EU/
B 107 Eq =myc® 1 TeV
o
3 7
]
e /
3
g 10
L Bound electrons
£ “opcpa
1015
101

1960 1970 1980 1990 2000 2010 2020 2030
Year

Evolution of laser intensity. Future experiment estimations included. [ Yakovlev: Quant. Electron. 44 (2014), 393]
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ounds
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Laserscape for existing and upcoming laser-particle experiments.
For plane wave n = X — CoM energy for photon-photon collision!
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[ Fedotov et al.: Phys. Rep. 1010 (2023), 1]
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. . In Det (ilp — m) = Z
Effective action @

One loop effective action in arbitrary background:

elel = Det[i — ¢ — m] (2)

@ Vacuum bubbles contain field dependent physics:
out(0]0), :/@A/@\TI/@\PG%SM"I’] ~ Det (il —m).

Vacuum persistence probability |ou(0[0),|* = e=29T[%) < 1 — vacuum decay!
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. . In Det (ilp — m) = Z
Effective action @

One loop effective action in arbitrary background:

elel = Det[i — ¢ — m] (2)

@ Vacuum bubbles contain field dependent physics:
out(0]0), :/@A/@\TI/@\PG%SM"I’] ~ Det (il —m).
Vacuum persistence probability |ou(0[0),|* = e=29T[%) < 1 — vacuum decay!

@ Decay rate ~ 23T'[q] related to pair creation by optical theorem: [sauter, schwinger
2

This is the famous Schwinger mechanism.
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) In Det (i) — m) = = Z . i
Euler-Heisenberg Lagrangian @ O

One loop effective action in arbitrary background:

eilla] — éDet[(a —a)?+m? + %/WU‘“’] (2)

o First qua ntised representation: [Strassler: Nucl. Phys. B385 (1992), 45, Schubert: Phys. Rept. 355 (2001), 73 |

Tla] =+ / I o-im®T § gu(r) f Pup(r) e SwLlzYl
2Jo T PBC ABC

. . T 2
Worldline action Sy, [z, 9] = —A dr[% + Ly +a(a(r) - a(r) +i(r) - fla(r)) -w(ﬂ]
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In Det zlp m)— Z
Euler-Heisenberg Lagrangian @

One loop effective action in arbitrary background:

eiF[a] _ %Det [(8 _ a)2 + m2 + %’,f;u/o"“’/] (2)

o First qua ntised representation: [Strassler: Nucl. Phys. B385 (1992), 45, Schubert: Phys. Rept. 355 (2001), 73 |

Ta] = —= / L A e f Py(r)eF SwLlzv]
2Jo T° PBC ABC

2

_ _ T
Worldline action Sy, [z, 9] = —A dr[’T + &y +a(a(r) - a(r) +ip(r) - f(x(r)) "111(7)]

@ Constant EM fields — solution for effective Lagrangian:

(1) o dr ~ D —im 2p. 3 tanh(fT") )
Ly = 72/0 T — (4miT) det [ T ] I g, Euler]
@ Electric field - poles at eET = (2n + 1)§ produce imaginary part
1) — 1 2
2JL"§E}H = Z —2 7” . [Schwinger, N.B. Nikishov Zh. Eksp. Teor. Fiz. 57 (1969) 1210]
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Field assisted processes ! .
Nonlinear

Tree level scattering

First order processes (e.g. plane wave background) — one vertex:
‘ P ‘ P
P §=< ¢ —< >=x P >_. ¢
q a q q
Nonlinear Compton Nonlinear Breit-Wheeler ~ Photon absorption Pair annihilation

Field induced: energy-momentum exchanged with background.
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Field assisted processes

Tree level scattering

First order processes (e.g. plane wave background) — one vertex:
‘ P ‘ P
P §=< ¢ —< >=x P >_. ¢
q a q q
Nonlinear Compton Nonlinear Breit-Wheeler ~ Photon absorption Pair annihilation

Field induced: energy-momentum exchanged with background.

@ S-matrix S = —ie(27)3 [ dud*(uwn — 3, p;) M(p;, u)
@ For nonlinear Com pton, u = jTﬁ_ [E-144: Phys. Rev. Lett. 76 (1996), 3116]
Feynman Rules:

£:p(p)

M= [ B0y {06 @) — [ dpalate) 0 utvie) e Sarnal

Frequency of outgoing photon: w/(¢) = #,
20
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Nonlinear Compton

Field assisted processes Nonlinear Breit.

Nonlinear Compton scattering

Differential cross section for e~ (p) — e~ (q) + ~(£)

d3a e} s 2 q
2r | 1672m2n2 M|
dsd*r;  16m*m*n*1—s

@ For ¢ > 1, scattering rate has distinct scalings: [nikishov, Ritus: Sov. Phys. JETP 10 (1964) 529]

ax for x < 1
o/T ~ 2 (3)
ax3 forx>1
10t = 2 “l 4 5 7
10°
107t
£
ﬁ 1072
M LT
1o | hl “ Nl“
0.00 0.05 0.10 0.15 0.20 025

Differential spectrum, ‘(li—z as a function of lightfront momentum transfer, a (r; = (0.5, 0)) with multiple Compton edges. [Fedotov et al.]
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Nonlinear Compton

Field assisted processes .
M ed p © Nonlinear Breit-Wheeler

Nonlinear Breit-Wheeler

Field assisted pair production: +(¢) — et (p) + e~ (q) (from NLC by crossing)

_it(=p)(e)
M=-— / doula(e) FOV-pe)e it s=Do

Threshhold energy: {+uwn=p+q=— u > % [E-144: Phys. Rev. Lett. 79 (1997), 1626]

@ Linear regime: ¢ < 1 = 1 laser photon
@ Multi-photon regime: ¢ ~1 = n > 1 laser photons

@ Non-perturbative regime: ¢ > 1 = many laser photons
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Field assisted processes .
M ed p © Nonlinear Breit-Wheeler

Nonlinear Breit-Wheeler

Field assisted pair production: +(¢) — et (p) + e~ (q) (from NLC by crossing)

_it(=p)(e)
M=-— / doula(e) FOV-pe)e it s=Do

Threshhold energy: {+uwn=p+q=— u > % [E-144: Phys. Rev. Lett. 79 (1997), 1626]

@ Linear regime: ¢ < 1 = 1 laser photon
@ Multi-photon regime: ¢ ~1 = n > 1 laser photons

@ Non-perturbative regime: ¢ > 1 = many laser photons

Production rate in intense pIa ne wave: [Nikishov, Ritus: Sov. Phys. JETP 19 (1964) 529]
&
ae X y<1
o/T ~ 2 (4)
ax3 x>1

Finite pulse effects can have significant impact on pair creation rate.
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Higher order processes
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Higher multiplicity
Higher loop order

Higher order processes Summar

Trident process

Nonlinear trident is the 1 — 3 process e~ (p) — e~ (p1) + e (p2) + et (p3):

Internal photon conveniently taken in lightfront gauge:

—iLuw ()

nply +Luny
02 4 e ’

D;u/(f) = s Luy(@) = guv — Z""
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Trident process

Nonlinear trident is the 1 — 3 process e~ (p) — e~ (p1) + e (p2) + et (p3):

Internal photon conveniently taken in lightfront gauge:

_ —iLp (€) _ nply + Luny
Dpuv(6) = m ’ Luw(€) = g — T
. 2
On-shell / Off-shell split Ly (¢) = Luw (¢*) = Lrnpmy:
2 2
® L, (¢*) = Causal “2-step process” Z ‘#-Qi‘ ﬁw“<‘

02 “ "
® nuny Contact “1-step process

[liderton: Phys. Rev. Lett. 106 (2011) 020404]
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Higher order processes Summar

Double nonlinear Compton

Taken as a 1 — 3 process: e~ (p) = e~ (p1) +7(p2) +v(p3)

= S ES
1 EOI a5

NLC Double NLC

P

Lightfront integrals carried out numerically for plane wave background:

6 ~ 1 [Seipt, Kampfer: Phys. Rev. D 85 (2012) 101701], f > 1 [Mackenroth, Di Piazza: Phys. Rev. Lett. 110 (7) (2013) 070402]

two-photon:

<— one-photon

two-photon

0.0 0.1 0.2 0.3 040608101214161820
w1 [Ge\/]

Differential cross section for single & double NLC at fixed emitted photon frequency. [Seipt, Kimpfer]
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Open worldlines

Higher multiplicity amplitudes involve multiple highly oscillatory integrals
@ Locally Constant Field Approximation (LCFA): [iiderton, King, Seipt: Phys. Rev. A 99 (4) (2019) 042121]
Integrate rate in crossed constant fields (relativistic electron sees this!).
@ Locally Monochromatic Field Approximation (LMA): [Heinzl, King, Macleod: Phys. Rev. A 102 (2020) 063110]
Integrate rate in monochromatic field over pulse envelope

@ Often modelled as chains of first-order, two-step processes — ideal for simulation
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Higher order processes

Open worldlines

Higher multiplicity amplitudes involve multiple highly oscillatory integrals
@ Locally Constant Field Approximation (LCFA): [iiderton, King, Seipt: Phys. Rev. A 99 (4) (2019) 042121]
Integrate rate in crossed constant fields (relativistic electron sees this!).
@ Locally Monochromatic Field Approximation (LMA): [Heinzl, King, Macleod: Phys. Rev. A 102 (2020) 063110]
Integrate rate in monochromatic field over pulse envelope

@ Often modelled as chains of first-order, two-step processes — ideal for simulation

Worldline formalism extended: open lines = N-photon tree level amplitudes

2

DN~/OoodTe*iWQT/Dx(T)V(kl,al)...V(kN,aN)e% Jo drl=Er —a@)i(n] (5)

T .
Photon vertex operator: V(k,¢) =/ dre-aethz(),
0

[Ahmadiniaz, JPE et al.: JHEP 08 (2020) 08, 049 & JHEP 01 (2022) 050]

[Ahmad et al.: Nucl.Phys.B 919 (2017) 9-24, Copinger, JPE et al.: 2311.14638 [hep-th]]

James P. Edwards Strong Field QED
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Vacuum polarisation

Photon polarisation tensor, T1#¥(a) = response of probe photon: (ren: Thesis (1952)]

 _0°T[a+A7] _
SAT(O)SAT(E) | Av=0 —

I (¢, £ |a) = 7 v
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Vacuum polarisation

Photon polarisation tensor, T1#¥(a) = response of probe photon: (ren: Thesis (1952)]

2 Y
uv Moy o O TlatAT] = 4 "
(L, Ela) SAL(0SAY () lav=0 — /

@ Vacuum birefringence: distinct dispersion relations for photon polarisations:

L2

Linear polarisation n1,2(¢) ~ 1 — 1671'20(20172 (fzfn)él + ...

[Dinu et al.: Phys. Rev. D 89 (12) (2014) 125003, Macleod, JPE et al.: New J.Phys. 25 (2023) 9, 093002]
@ Helicity flip: genuine elastic scattering off background field.

[Delbriick: Z. Phys. 84 (1933), 144, Schumacher et al.: Phys. Lett. B 59 (1975), 134]
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Higher order processes Summar

Vacuum polarisation

Photon polarisation tensor, T1#¥(a) = response of probe photon: (ren: Thesis (1952)]

2 Y
nZ Moy o O TlatAT] _ ~
(L, Ela) SAL(0SAY () lav=0 — /

@ Vacuum birefringence: distinct dispersion relations for photon polarisations:

2

Linear polarisation n1,2(¢) ~ 1 — 1671'20(20172 (ggfn)él + ...

[Dinu et al.: Phys. Rev. D 89 (12) (2014) 125003, Macleod, JPE et al.: New J.Phys. 25 (2023) 9, 093002]
@ Helicity flip: genuine elastic scattering off background field.

[Delbriick: Z. Phys. 84 (1933), 144, Schumacher et al.: Phys. Lett. B 59 (1975), 134]

Lab experiments: PVLAS close to QED sensitivity [petia vatie et al.: Phys. Rept. 871 1-74]

H | B EF [Ahmadiniaz et al.: Phys. Rev. D 104 (2021), L011902]

SEL [Shen et al.: Plasma Phys. Control. Fusion 60 (2018), 044002]
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Higher order processes

Vacuum polarisation

Higher multiplicity
Higher loop order

Summary

(a) rr\ v = 1 ps

(b) Tawhm = 2 ps

[Macleod, JPE et al.:

New J.Phys.

A e=02GV ) [, e =026 ir | ) )
W T T T [ T i T T T T
05+ ) L 1L
~ g _‘____Aa""s i | I i ______,—/
20
05 | 1t 1t
(d) Tghm = 1 ps (e) Th\]nn =2ps | () Tt = 3 s
[ U:l)“l 3(‘\'] . N X 1 GeV | X ] g =0.1 GeV ) )
400 -200 0 00 100 000 500 0 500 1000 1300 70 0 750 1500
© [ [

Figure: Stokes parameter evolution encoding polarisation asymmetry (multiple
scattering expected if mean free path of the probe photon < laser pulse length).
25 (2023) 9, 093002]

James P. Edwards Strong Field QED

LILLL=2 ™ ] [Aﬂmaalnlaz et al.:

Phys. Rev. D 102 (2021), LOI1002]

SEL [Shen et al.: Plasma Phys. Control. Fusion 60 (2018), 044002]
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Higher order processes Summar

Light-by-light

External fields allow additional processes mediated by virtual loops:

+Ot ~O 20O~

@ 1 — 1 scattering: elastic & inelastic [E320 and LUXE: Eur. Phys. J. ST 230 (2021), 2445]
@ Photon splitting in strong magnetic fields

[Adler: Annals Phys. 67 (1971) 599, Papanyan, Ritus: Sov. Phys. JETP 34 (6) (1972) 1195

Adler, Schubert: Phys. Rev. Lett. 77 (1996), 1695, Di Piazza et al.: Phys. Rev. A 76 (2007), 032103]
@ Light-by-light scattering enhancement

[Tennant: Phys. Rev. D 93 (12) (2016), 125032, Gies et al.: Phys. Rev. D 103 (7) (2021), 076009 ]
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Higher loop order
Higher order processes Summar

Light-by-light

External fields allow additional processes mediated by virtual loops:

+Ot ~O 20O~

@ 1 — 1 scattering: elastic & inelastic [E320 and LUXE: Eur. Phys. J. ST 230 (2021), 2445]
@ Photon splitting in strong magnetic fields

[Adler: Annals Phys. 67 (1971) 599, Papanyan, Ritus: Sov. Phys. JETP 34 (6) (1972) 1195

Adler, Schubert: Phys. Rev. Lett. 77 (1996), 1695, Di Piazza et al.: Phys. Rev. A 76 (2007), 032103]
@ Light-by-light scattering enhancement

[Tennant: Phys. Rev. D 93 (12) (2016), 125032, Gies et al.: Phys. Rev. D 103 (7) (2021), 076009 ]

Low energy limit of four-photon amplitude more accessible:
© Lowest order contribution to vacuum polarisation!
[Ahmadiniaz et al.: Phys. Rev. D 108 (2023) 7, 076005 and Ahmadiniaz et al.: Nucl.Phys.B 991 (2023) 116216]
@ Partially off-shell process detected at ATLAS
[Aaboud et al.: Nature Phys. 13 (9) (2017) 852, Aad, et al.: Phys. Rev. Lett. 123 (5) (2019) 052001]

@ Contributes to g-2 at £ > 3 loop order
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Higher order processes Summar

Closed worldlines

First quantised approach also well-suited to calculating loop corrections:

oo -
Ila] = 1 gefim?T D (T) f- Pu(r) e%S\\'L [z,1] + Internal Photons )
2Jo T PBC ABC

@ 1-loop effective action calculated in constant field [schmidt, Schubert: Phys. Lett. B 318 (1003), 438]
@ Master Formulae for N-photon scattering [Reuter et al.., Ann. Phys. (N.Y.) 259 (1997), 313]
@ Generalised to plane wave background only recently

JPE, Schubert: Phys. Lett. B 822 (2021), 136696 and Schubert, Shaisultanov: Phys. Lett. B 843 (2023), 137969]
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Higher order processes Summar

Euler-Heisenberg

Resurgence in higher-loop calculations of Euler-Heisenberg Lagrangian:

I'gglal =/dDw£EH(f27J?2732f27--~)-

@ For D = 4: TWO-|00pS with zero derivatives [Ritus: Sov. Phys. JETP 42 (5) (1975) 774]
Known to one-loop at quadratic in derivatives
[Karbstein: JHEP 09 (2021) 070, Dunne, Schubert: Nucl. Phys. B 564 (2000) 591]

@ Higher-loop results for constant fields / self-dual fields
[Huet et al.: Adv. High Energy Phys. 2017 (2017) 6214341, Dunne, Schubert: Phys. Lett. B526 (2002), 55|

@ Three-loop results obtained in lower dimensions [Huet et al.: JHEP 03 (2019) 167]
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Euler-Heisenberg

Resurgence in higher-loop calculations of Euler-Heisenberg Lagrangian:

I'gglal =/dDw£EH(f27J?2732f27--~)-

@ For D = 4: TWO-|00pS with zero derivatives [Ritus: Sov. Phys. JETP 42 (5) (1975) 774]
Known to one-loop at quadratic in derivatives
[Karbstein: JHEP 09 (2021) 070, Dunne, Schubert: Nucl. Phys. B 564 (2000) 591]
@ Higher-loop results for constant fields / self-dual fields
[Huet et al.: Adv. High Energy Phys. 2017 (2017) 6214341, Dunne, Schubert: Phys. Lett. B526 (2002), 55|
@ Three-loop results obtained in lower dimensions [Huet et al.: JHEP 03 (2019) 167]
Recent discovery: 1PR contributions to £y in constant fields...
; ; [Gies, Karbstein: JHEP 03 (2016)]
@ @ w O [Karbstein: JHEP 10 (2017) 075 |
{ [JPE, Schubert: Nucl. Phys. B 923 (2017) 339]

Q\’V\@ @ @O [Ahmadiniaz, JPE et al.: Nucl. Phys. B 924 (2017) 377]
—_— | | [Huet, JPE et al.: Nucl. Phys. B35 (2018) 19]
@ 1PR contributions found to be dominant in strong field limit!

[Karbstein: Phys. Rev. Lett. 122 (21) (2019) 211602]
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Ritus-Narozhny Conjecture

Large &, x limits of NLC & NLBW rates scale as ax%.
@ General conjecture for crossed constant fields (LCFA):
a— aﬁ = Breakdown of strong field Furry expansion for large x > 1600.

[Ritus: Ann. Phys. 69 (2) (1972) 555, Narozhny: Phys. Rev. D21 (4) (1980) 1176]

1 loop

(1a) ax?? (1b) afl?
2 loops
(2a) 2P logy @b @y log y
o) @ logy
3 loops
(3a) &y logy Gd PP log2y
AAA Rl AN 3.2/3 1600 3453
(3b) \ Y, aylogy (3e) Syt
S log? i L
(3¢) @y log?y 39 O, @rlogiy
e
'S LS
G A0, e
Asymptotic results in CCF (1969-1980). From [Mironov et al.: Phys. Rev. D 102 (2020), 053005]

@ Already known not to hold in some processes away from CCF limit.
[Podszus, Di Piazza: Phys. Rev. D 99 (2019), 076004, liderton: Phys. Rev. D 100 (2019), 125018]
@ Even in CCF — not seen for inclusive observables [spe, iiderton: Phys. Rev. D 103 (2021) 1, 01600]
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Resummation

State of the art: all-orders resummation of vac. pol. “bubble diagrams”
[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

@ Mass operator for on-shell incoming particle (maximal saturation)

o0, Oy
e YFN“@(\%\,H ) r:@mv Ty ) @r &,‘m
= 4 = L o= E——
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Resummation

State of the art: all-orders resummation of vac. pol. “bubble diagrams”
[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

@ Mass operator for on-shell incoming particle (maximal saturation)

o n et O e
e, e, SO, o 0,
CIE S+ =%

@ One-loop vacuum polarisation known analytically in CCF
Part of it implies a running of electric charge (logarithmic in y).
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Resummation

State of the art: all-orders resummation of vac. pol. “bubble diagrams”
[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

@ Mass operator for on-shell incoming particle (maximal saturation)

o n et O e
e, e, SO, o 0,
CIE S+ =%

@ One-loop vacuum polarisation known analytically in CCF
Part of it implies a running of electric charge (logarithmic in y).

@ Strong field limit: each loop contributes factor « aX%.
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Resummation

State of the art: all-orders resummation of vac. pol. “bubble diagrams”
[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

@ Mass operator for on-shell incoming particle (maximal saturation)

o n et O e
e, e, SO, o 0,
CIE S+ =%

@ One-loop vacuum polarisation known analytically in CCF
Part of it implies a running of electric charge (logarithmic in y).

@ Strong field limit: each loop contributes factor o aX%.
@ At £ > 1-loop order: bubble chain scales as X’% (axé)g.
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Resummation

State of the art: all-orders resummation of vac. pol. “bubble diagrams”

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

@ Mass operator for on-shell incoming particle (maximal saturation)

e ”‘C b
e, e OO, o oY
o 4 + o =E—

One-loop vacuum polarisation known analytically in CCF
Part of it implies a running of electric charge (logarithmic in y).

. .. . 2
Strong field limit: each loop contributes factor o ax 5.
. 1 2 n
At £ > 1-loop order: bubble chain scales as x5 (ax3)®.
Resummed result in non-pertrubative limit: dominant contributions scale as

3 )
Xi% (QX%)§ and Xf% (ax§)2

Recent work validating treatment of vertex provided at one-loop order.

[Di Piazza, Lopez-Lopez: Phys. Rev. D 102 (7) (2020) 076018]
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Higher order processes Summary

Conclusion

Strong field QED — an open window onto nonlinear effects in QED!

Non-perturbative aspects of QED can be probed at relatively low energies by
enhancing vacuum coupling.

Main points:
@ Low order processes — already part of experimental searches
@ Higher multiplicity processes — relevant for cascades
© Loop effects — expose nonlinear nature of quantum vacuum

© Vacuum birefringence — target of upcoming laser experiments

An invitation:
Worldline Formalism — especially useful for studying higher order processes.
[JPE, Schubert: arXiv:1912.10004 [hep-th]]
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Higher order processes Summary

Not mentioned

Many other interesting aspects of this field:
@ Details beyond plane waves: non-null fields, focussing etc
@ Numerical simulations: Particle in Cell codes

@ Semi-classical approaches (worldline instantons)
Very useful for studying the effective action!

My key question:
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@ Numerical simulations: Particle in Cell codes
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My key question:

i Will we be able to probe non-perturbative effects like Schwinger pair creation?
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Higher order processes Summary

Not mentioned

Many other interesting aspects of this field:
@ Details beyond plane waves: non-null fields, focussing etc
@ Numerical simulations: Particle in Cell codes

@ Semi-classical approaches (worldline instantons)
Very useful for studying the effective action!

My key question:

i Will we be able to probe non-perturbative effects like Schwinger pair creation?

iThank you for your attention!
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Chirped Pulse Amplification — 2018 Nobel Prize

[Strickland, Mourou: Opt Commun. 56 (1985), 219.]
Initial short pulse

A pair of gratings disperses
the spectrum and stretches
the pulse by a factor
— N\ of a thousand
Al
Short-pulse oscillator

The pulse is now long l
and low-power, safe
for amplification

High-energy pulse after amplification

Power amplifiers

Resulting high-energy,
ultrashort pulse

A second pair of gratings

reverses the dispersion of the

first pair and recompresses the pulse.

Figure: Schematic of CPA: ultra-short laser pulse amplified to PW level
[Science and Technology Review: LLNL, Sept 1985]
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Worldline Master Formulae

All multiplicity results obtained for tree level amplitudes

@ Master formulae obtained in constant fields: [anmad et al: Nucl.Phys.B 919 (2017) 9-24]
1

N o
(71'(’)N(ZW)D6(1) +p + Z ]\‘1) / dT u*mZTli
= 0 det? [cosZ]

—Th(1222)h

o
=
o
Il

DY (F | k1,215 k. e

T T
X / dry - - / dry e
0 0

@ LSZ-amputated formulae obtained for plane waves: [copinger, JPE et al.: 231114638 [hep-th]]
oo 0o N
(—ie)N(2m)36, (0 + K — p)/ dateiE+p' —p)+a™ / H dr; 8 ( N )

-a(r)dr—ics-a(ri)]

S0 (ki By by =2 *ig Rymea 0% 25)
£1€2+EN

ATP =
2§ -a(7)—a®(7)]dr —i [$52p"-6a(r)—6a” (1)]dr—2i 0L [JTL, ki

0 5=l
omill
i +9)-9—i N,y (TG bk —i sgn(ri—r)ei-ky+8(ri—7y)eioe; )

lin. &

Note: Momentum and lightfront integrals = Schwinger proper time integrals!
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