An introduction to Strong Field QED

James P. Edwards

 $james.p.edwards @plymouth.ac.uk \\ plymouth.ac.uk/staff/james-edwards-2$

Durham ATM December '23

James P. Edwards

Strong Field QED

Outline

Introduction

- QED in EM backgrounds
- Laser experiments
- Vacuum instability

2 Field assisted processes

- Nonlinear Compton
- Nonlinear Breit-Wheeler

3 Higher order processes

- Higher multiplicity
- Higher loop order
- Summary

Introduction QEI Field assisted processes Lase Higher order processes Vac

QED in EM background: Laser experiments Vacuum instability

Introduction

QED in EM backgrounds Laser experiments Vacuum instability

Background field QED

Familiar action for Dirac field $\Psi(x)$ coupled to gauge potential $A(x) = A_{\mu}(x)dx^{\mu}$:

$$S[\Psi, A] = \int d^D x \left[\frac{1}{4} \operatorname{tr} F^2 + \bar{\Psi} (i \not\!\!D - m) \Psi \right] \qquad (D_\mu := \partial_\mu + i e A_\mu).$$

• Split gauge field into **background** + quantised photons,

 $eA_{\mu}(x) = \frac{a_{\mu}(x)}{e} + eA_{\mu}^{\gamma}(x).$

[Sauter: Z . Phys. 69 (1931) 742, Heisenberg, Euler: Z. Phys. 98 11-12 (1936) 714, Schwinger: Phys. Rev. 82 (1951) 664 ...]

• Laser background: high occupation coherent state \implies High intensity.

QED in EM backgrounds Laser experiments Vacuum instability

Background field QED

Familiar action for Dirac field $\Psi(x)$ coupled to gauge potential $A(x) = A_{\mu}(x)dx^{\mu}$:

$$S[\Psi, A] = \int d^D x \left[\frac{1}{4} \operatorname{tr} F^2 + \bar{\Psi} (i \not\!\!D - m) \Psi \right] \qquad (D_\mu := \partial_\mu + i e A_\mu) \,.$$

• Split gauge field into **background** + quantised photons,

 $eA_{\mu}(x) = \frac{a_{\mu}(x)}{e} + eA_{\mu}^{\gamma}(x).$

[Sauter: Z . Phys. 69 (1931) 742, Heisenberg, Euler: Z. Phys. 98 11-12 (1936) 714, Schwinger: Phys. Rev. 82 (1951) 664 ...]

- Laser background: high occupation coherent state \implies High intensity.
- Aim: Quantise theory in the semi-classical background.

Two interactions between matter and photons:

QED in EM backgrounds Laser experiments Vacuum instability

Furry picture

• Laser interactions add coherently \Longrightarrow background coupling $\alpha \rho \gamma \gg 1$

Non-perturbative QFT at low energies!

• In the Furry picture: background taken into account to all orders:

 $(i\partial - \mathbf{a}(x) - m)\Psi(x) = 0$, $\mathcal{S}(x', x) = \langle x' | i (\hat{p} - \mathbf{a} - m)^{-1} | x \rangle$. [Furry: Phys. Rev. 81 (1951) 115]

QED in EM backgrounds Laser experiments Vacuum instability

Furry picture

• Laser interactions add coherently \Longrightarrow background coupling $\alpha \rho_{\gamma} \gg 1$

Non-perturbative QFT at low energies!

• In the Furry picture: background taken into account to all orders:

$$(i\partial \!\!\!/ - \!\!\!/ \!\!\!/ (x) - m)\Psi(x) = 0, \qquad \mathcal{S}(x', x) = \langle x' | i (\widehat{p} - \!\!\!/ - m)^{-1} | x \rangle.$$
 [Furry: Phys. Rev. 81 (1951) 115

QED in EM backgrounds Laser experiments Vacuum instability

Furry picture

• Laser interactions add coherently \Longrightarrow background coupling $\alpha \rho_{\gamma} \gg 1$

Non-perturbative QFT at low energies!

• In the Furry picture: background taken into account to all orders:

$$(i\partial - \mathbf{a}(x) - m)\Psi(x) = 0$$
, $\mathcal{S}(x', x) = \langle x' | i (\widehat{p} - \mathbf{a} - m)^{-1} | x \rangle$. [Furry: Phys. Rev. 81 (1951) 115]

• Background enhances vertex coupling: $-ie\gamma^{\mu} \rightarrow -i\xi\gamma^{\mu}$

$$\left(\boldsymbol{\xi} \sim \sqrt{\alpha \rho_{\boldsymbol{\gamma}}}\right)$$

Note: still perturbative in α for quantised photons – but see later!

QED in EM backgrounds Laser experiments Vacuum instability

Nonlinearity parameters

Strong Field QED (SFQED) parameterised by two nonlinearity parameters:

• "Intensity parameter" – classical nonlinearity parameter, ξ or a_0 :

$$\xi = \frac{eE\lambda_C}{\hbar\omega} \approx \frac{mc^2}{\hbar\omega} \frac{E}{E_{\rm cr}}$$

Work done by background over 1 λ_C (units of photon energy $\hbar\omega$).

• Quantum nonlinearity parameter, χ :

$$\chi = \frac{eE\gamma\lambda_C}{mc^2} \approx \frac{E}{E_{\rm cr}}\Big|_{\rm Rest}$$

Work done by background over 1 λ_C (units of electron rest mass energy). Critical field strength: $E_{\rm cr} = \frac{m^2 c^3}{e\hbar} \sim 1.3 \times 10^{18} \text{ V/m}.$ [Sauter, Heisenberg, Euler, Schwinger]

QED in EM backgrounds Laser experiments Vacuum instability

Nonlinearity parameters

Strong Field QED (SFQED) parameterised by two nonlinearity parameters:

• "Intensity parameter" – classical nonlinearity parameter, ξ or a_0 :

$$\xi = \frac{eE\lambda_C}{\hbar\omega} \approx \frac{mc^2}{\hbar\omega} \frac{E}{E_{\rm cr}}$$

Work done by background over 1 λ_C (units of photon energy $\hbar\omega$).

• Quantum nonlinearity parameter, χ :

$$\chi = \frac{eE\gamma\lambda_C}{mc^2} \approx \frac{E}{E_{\rm cr}}\Big|_{\rm Rest}$$

Work done by background over 1 λ_C (units of electron rest mass energy). Critical field strength: $E_{\rm cr} = \frac{m^2 c^3}{e\hbar} \sim 1.3 \times 10^{18} \text{ V/m}.$ [Sauter, Heisenberg, Euler, Schwinger]

• $\xi \sim \mathcal{O}(1) \Longrightarrow$ high density of interactions with background

• $\chi \sim \mathcal{O}(1) \Longrightarrow$ **non-perturbative** quantum processes become likely

QED in EM backgrounds Laser experiments Vacuum instability

Plane waves - classical dynamics

Plane wave background - "good" approximation to field of intense laser.

• Plane wave characterised by null vector, n_{μ} , defining lightfront time:

$$x^+ = n \cdot x, \qquad n^2 = 0 \tag{1}$$

Background gauge potential $a_{\mu} = a_{\mu}(x^{+}) = \delta_{\mu\perp} \int_{-\infty}^{x^{+}} d\varphi \, e\mathbf{E}_{\perp}(\varphi).$

• Field invariants vanish: $\mathcal{F} = \frac{1}{4} \operatorname{tr}(f^2) = 0$ and $\mathcal{G} = \frac{1}{4} \operatorname{tr}(f \cdot \tilde{f}) = 0$ $\mathbf{E}^2 - \mathbf{B}^2 = 0$ $\mathbf{E} \cdot \mathbf{B} = 0$

QED in EM backgrounds Laser experiments Vacuum instability

Plane waves - classical dynamics

Plane wave background - "good" approximation to field of intense laser.

• Plane wave characterised by null vector, n_{μ} , defining lightfront time:

$$x^+ = n \cdot x, \qquad n^2 = 0 \tag{1}$$

Background gauge potential $a_{\mu} = a_{\mu}(x^{+}) = \delta_{\mu\perp} \int_{-\infty}^{x^{+}} d\varphi \, e\mathbf{E}_{\perp}(\varphi).$

- Field invariants vanish: $\mathcal{F} = \frac{1}{4} \operatorname{tr}(f^2) = 0$ and $\mathcal{G} = \frac{1}{4} \operatorname{tr}(f \cdot \tilde{f}) = 0$ $\mathbf{E}^2 - \mathbf{B}^2 = 0$ $\mathbf{E} \cdot \mathbf{B} = 0$
- Classical dynamics Lorentz force equation in lightfront time:

$$p_{\mu}(\varphi) = P_{\mu} - a_{\mu}(\varphi) + \frac{2P \cdot a(\varphi) - a^2(\varphi)}{2P^+} n_{\mu} \qquad p_{\mu} = m\dot{x}_{\mu}, \qquad p^2 = m^2.$$

 $p^+ = p^+ = \text{const}$ is conserved...

• Canonical momentum $\pi_{\mu} = p_{\mu} + a_{\mu}$: Three components π^+ , π^{\perp} conserved \implies integrable!

QED in EM backgrounds Laser experiments Vacuum instability

Plane waves – Volkov solutions

Plane wave background - "good" approximation to field of intense laser.

• Plane wave characterised by null vector, n_{μ} , defining lightfront time:

$$x^+ = n \cdot x, \qquad n^2 = 0 \tag{1}$$

• Quantum dynamics – Volkov wavefunctions:

[Wolkow: Z. Phys. 94 (1935) 250]

$$\Psi_{p,s}(x) = \left(1 + \frac{\# \phi(x^+)}{2p^+}\right) u_s(p) \operatorname{e}^{-ip \cdot x - i \int_{-\infty}^{x^+} d\varphi} \frac{2p \cdot a(\varphi) - a^2(\varphi)}{2p^+}$$

(single particle wavefunctions)

• Quantum dynamics – Volkov propagator: $S(x', x) = x' \times x$

$$=i\int \frac{d^4p}{(2\pi)^4} \left(1+\frac{\#\not\!\!\!/a(x'^+)}{2p^+}\right) \frac{\not\!\!/ +m}{p^2-m^2+i\epsilon} \left(1+\frac{\not\!\!/a(x^+)\not\!\!/}{2p^+}\right) \mathrm{e}^{-ip\cdot(x'-x)-i\int_{x^+}^{x'^+} d\varphi} \frac{2p\cdot a(\varphi)-a^2(\varphi)}{2p^+}$$

 Early work with monochromatic plane waves misses non-trivial effects from beam profile: Finite duration / transverse structure etc.

QED in EM background Laser experiments Vacuum instability

High intensity laser facilities

Probes of SFQED – often scatter electrons off intense laser pulses (higher χ).

e⁻ beam sourced from ordinary accelerator: high precision measurements E144 at SLAC (46GeV); E320 at SLAC (13GeV); LUXE at DESY (16.5GeV).

QED in EM background Laser experiments Vacuum instability

High intensity laser facilities

Probes of SFQED – often scatter electrons off intense laser pulses (higher χ).

- e^- beam sourced from ordinary accelerator: high precision measurements E144 at SLAC (46GeV); E320 at SLAC (13GeV); LUXE at DESY (16.5GeV).
- e⁻ beam from laser wakefield acceleration: facilities probing higher ξ CoRELS; ELI; Apollon; Vulcan; SEL; ZEUS; XCELS O(10s MeV) - O(10s GeV)

LWFA: Laser pulse initiates an electron plasma (ionisation) wave which produces "bubbles" with extremely high longitudinal electric fields ($c\tau < \lambda_p$). Electrons accelerated by "surfing" on the plasma wave.

[Litos et al.: Nature 515 (2014), 92]

QED in EM background Laser experiments Vacuum instability

Intense laser facilities - 2009

Significant growth in intense laser facilities (partly driven by CPA [Strickland, Mourou]).

[ICUIL: www.icuil.org]

QED in EM background Laser experiments Vacuum instability

Intense laser facilities - 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

[ICUIL: www.icuil.org]

QED in EM background Laser experiments Vacuum instability

Intense laser facilities - 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

[ICUIL: www.icuil.org]

QED in EM background Laser experiments Vacuum instability

Intense laser facilities - 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

Evolution of laser intensity. Future experiment estimations included. [Yakovlev: Quant. Electron. 44 (2014), 393]

QED in EM background Laser experiments Vacuum instability

Intense laser facilities - 2019

Significant growth in intense laser facilities (reaching multi-petawatt power).

Effective action

QED in EM backgrounds Laser experiments Vacuum instability In Det $(i i - m) = \bigcirc = \sum \cdots \bigcirc \vdots$

One loop effective action in arbitrary background:

$$e^{i\Gamma[a]} = \operatorname{Det}\left[i\partial - \phi - m\right] \tag{2}$$

• Vacuum bubbles contain field dependent physics:

$$\operatorname{out}\langle 0 | 0 \rangle_{\operatorname{in}} = \int \mathscr{D}A \int \mathscr{D}\bar{\Psi} \int \mathscr{D}\Psi \operatorname{e}^{\frac{i}{\hbar}S[A,\Psi]} \approx \operatorname{Det}(i \not\!\!D - m) \,.$$

Vacuum persistence probability $|_{out} \langle 0|0 \rangle_{in}|^2 = e^{-2\Im\Gamma[a]} < 1 \implies$ vacuum decay!

Effective action

One loop effective action in arbitrary background:

$$e^{i\Gamma[a]} = \operatorname{Det}\left[i\partial - \phi - m\right] \tag{2}$$

• Vacuum bubbles contain field dependent physics:

$$\operatorname{out}\langle 0 | 0 \rangle_{\operatorname{in}} = \int \mathscr{D}A \int \mathscr{D}\bar{\Psi} \int \mathscr{D}\Psi \, \mathrm{e}^{\frac{i}{\hbar}S[A,\Psi]} \approx \operatorname{Det}(i \not\!\!D - m) \,.$$

Vacuum persistence probability $|_{out} \langle 0|0 \rangle_{in}|^2 = e^{-2\Im\Gamma[a]} < 1 \implies$ vacuum decay!

• Decay rate $\sim 2\Im\Gamma[a]$ related to pair creation by optical theorem: [Sauter, Schwinger]

This is the famous Schwinger mechanism.

QED in EM backgrounds
Laser experiments
Vacuum instability
In Det
$$(i\mathcal{D} - m) = \bigcirc = \sum \longrightarrow$$

Euler-Heisenberg Lagrangian

Worldline

One loop effective action in arbitrary background:

$$e^{i\Gamma[a]} = \frac{1}{2} Det[(\partial - a)^2 + m^2 + \frac{i}{2} f_{\mu\nu} \sigma^{\mu\nu}]$$
 (2)

First quantised representation: [Strassler: Nucl. Phys. B385 (1992), 45, Schubert: Phys. Rept. 355 (2001), 73]

$$\begin{split} \Gamma[a] &= -\frac{1}{2} \int_0^\infty \frac{dT}{T} \mathrm{e}^{-im^2 T} \oint_{\mathrm{PBC}} \mathscr{D}x(\tau) \oint_{ABC} \mathscr{D}\psi(\tau) \, \mathrm{e}^{\frac{i}{\hbar}S_{\mathrm{WL}}[x,\psi]} \, . \\ \text{action } S_{\mathrm{WL}}[x,\psi] &= -\int_0^T d\tau \Big[\frac{\dot{x}^2}{4} + \frac{i}{2}\psi\cdot\dot{\psi} + \mathbf{a}(x(\tau))\cdot\dot{x}(\tau) + i\psi(\tau)\cdot\mathbf{f}(x(\tau))\cdot\psi(\tau) \Big] \end{split}$$

Introduction Higher order processes

QED in EM backgrounds
Laser experiments
Vacuum instability
In Det
$$(i\mathcal{D} - m) = \bigcirc = \sum$$

Euler-Heisenberg Lagrangian

One loop effective action in arbitrary background:

$$e^{i\Gamma[a]} = \frac{1}{2} Det[(\partial - a)^2 + m^2 + \frac{i}{2} f_{\mu\nu} \sigma^{\mu\nu}]$$
 (2)

First quantised representation: [Strassler: Nucl. Phys. B385 (1992), 45, Schubert: Phys. Rept. 355 (2001), 73]

$$\Gamma[a] = -\frac{1}{2} \int_0^\infty \frac{dT}{T} e^{-im^2 T} \oint_{\text{PBC}} \mathscr{D}x(\tau) \oint_{ABC} \mathscr{D}\psi(\tau) e^{\frac{i}{\hbar} S_{\text{WL}}[x,\psi]}.$$

Worldline action $S_{\text{WL}}[x,\psi] = -\int_0^T d\tau \left[\frac{\dot{x}^2}{4} + \frac{i}{2}\psi\cdot\dot{\psi} + a(x(\tau))\cdot\dot{x}(\tau) + i\psi(\tau)\cdot f(x(\tau))\cdot\psi(\tau)\right]$

Constant EM fields – solution for effective Lagrangian:

$$\mathcal{L}_{\rm EH}^{(1)} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} (4\pi i T)^{-\frac{D}{2}} {\rm e}^{-im^2 T} {\rm det}^{-\frac{1}{2}} \Big[\frac{\tanh(fT)}{fT} \Big] \qquad \text{[Heisenberg, Euler} = -2 \int_0^\infty \frac{dT}{T} \left[\frac{\tanh(fT)}{fT} \Big] {\rm dt}^{-\frac{1}{2}} {\rm dt}^{-\frac{1}{2}} \left[\frac{\tanh(fT)}{fT} \Big] {\rm dt}^{-\frac{1}{2}} \left[\frac{\hbar(fT)}{fT} \Big] {\rm dt}^{-\frac{1}{2}} \left[\frac{\hbar(f$$

r]

• Electric field – poles at $eET = (2n+1)\frac{\pi}{2}$ produce imaginary part

$$2\Im\mathcal{L}_{\rm EH}^{(1)} = \frac{(eE)^2}{(2\pi)^3} \sum_{n=1}^{\infty} \frac{1}{n^2} e^{-n\frac{\pi m^2}{eE}}$$

[Schwinger, N.B. Nikishov Zh. Eksp. Teor. Fiz. 57 (1969) 1210]

Nonlinear Compton Nonlinear Breit-Wheeler

Field assisted processes

Nonlinear Compton Nonlinear Breit-Wheeler

Tree level scattering

First order processes (e.g. plane wave background) - one vertex:

Nonlinear Compton Nonlinear Breit-Wheeler Photon absorption Pair annihilation

Field induced: energy-momentum exchanged with background.

Nonlinear Compton Nonlinear Breit-Wheeler

Tree level scattering

First order processes (e.g. plane wave background) - one vertex:

Nonlinear Compton Nonlinear Breit-Wheeler

Photon absorption

Pair annihilation

Field induced: energy-momentum exchanged with background.

- S-matrix $S = -ie(2\pi)^3 \int du \, \delta^4(u\omega n \sum_i p_i) \mathcal{M}(p_i, u)$
- For nonlinear Compton, $u = \frac{\ell \cdot p}{\omega q^+}$: [E-144: Phys. Rev. Lett. 76 (1996), 3116] Feynman Rules:

$$\mathcal{M} = \int d^4x \, \bar{\Psi}_q(x) \, \not\in (\ell) \mathrm{e}^{i\ell \cdot x} \, \Psi_p(x) \longrightarrow \int d\varphi \, \bar{u}(q(\varphi)) \, \not\in (\ell) \, u(p(\varphi)) \, \mathrm{e}^{\frac{i}{\hbar} \frac{\ell \cdot p(\varphi)}{\omega q^+}} \, .$$

Frequency of outgoing photon: $\omega'(\ell) = \frac{\omega u p^+}{(p+\omega u n) \cdot \frac{\ell}{c0}}$.

Nonlinear Compton Nonlinear Breit-Wheeler

Nonlinear Compton scattering

Differential cross section for $e^-(p) \rightarrow e^-(q) + \gamma(\ell)$

$$\frac{d^3\sigma}{ds\,d^2r_{\perp}} = \frac{\alpha}{16\pi^2m^2\eta^2}\frac{s}{1-s}\left|\mathcal{M}\right|^2, \qquad s = \frac{q^+}{p^+}\,, \quad \mathbf{r}_{\perp} = \frac{\mathbf{q}_{\perp}}{ms}$$

• For $\xi \gg 1$, scattering rate has distinct scalings: [Nikishov, Ritus: Sov. Phys. JETP 19 (1964) 529]

Nonlinear Compton Nonlinear Breit-Wheeler

Nonlinear Breit-Wheeler

Field assisted pair production: $\gamma(\ell) \rightarrow e^+(p) + e^-(q)$ (from NLC by crossing)

$$\mathcal{M} = -\int d\varphi \,\bar{u}(q(\varphi)) \, \not\in(\ell) \, \nu(-p(\varphi)) \, \mathrm{e}^{-i \frac{\ell \cdot (-p)(\varphi)}{\omega q^+}} \,, \qquad s = \frac{p^+}{\ell^+}$$

Threshhold energy: $\ell + u\omega n = p + q \Longrightarrow u > \frac{2}{n}$.

[E-144: Phys. Rev. Lett. 79 (1997), 1626]

- Linear regime: $\xi \ll 1 \Longrightarrow 1$ laser photon
- Multi-photon regime: $\xi \sim 1 \implies n > 1$ laser photons
- Non-perturbative regime: $\xi \gg 1 \Longrightarrow$ many laser photons

Nonlinear Compton Nonlinear Breit-Wheeler

Nonlinear Breit-Wheeler

Field assisted pair production: $\gamma(\ell) \rightarrow e^+(p) + e^-(q)$ (from NLC by crossing)

$$\mathcal{M} = -\int d\varphi \,\bar{u}(q(\varphi)) \,\phi(\ell) \,\nu(-p(\varphi)) \,\mathrm{e}^{-i\frac{\ell \cdot (-p)(\varphi)}{\omega q^+}} \,, \qquad s = \frac{p^+}{\ell^+}$$

Threshhold energy: $\ell + u\omega n = p + q \Longrightarrow u > \frac{2}{n}$.

[E-144: Phys. Rev. Lett. 79 (1997), 1626]

(4)

- Linear regime: $\xi \ll 1 \Longrightarrow 1$ laser photon
- Multi-photon regime: $\xi \sim 1 \Longrightarrow n > 1$ laser photons
- Non-perturbative regime: $\xi \gg 1 \Longrightarrow$ many laser photons

Production rate in intense plane wave:

[Nikishov, Ritus: Sov. Phys. JETP 19 (1964) 529]

$$\sigma/T \sim \begin{cases} \alpha e^{-\frac{8}{3\chi}} & \chi \ll 1\\ \alpha \chi^{\frac{2}{3}} & \chi \gg 1 \end{cases}$$

Finite pulse effects can have significant impact on pair creation rate.

Introduction Higher multiplici Field assisted processes Higher loop orde Summary

Higher order processes

Higher multiplicity Higher loop order Summary

Trident process

Nonlinear trident is the $1 \rightarrow 3$ process $e^-(p) \rightarrow e^-(p_1) + e^-(p_2) + e^+(p_3)$:

Internal photon conveniently taken in lightfront gauge:

$$D_{\mu\nu}(\ell) = \frac{-iL_{\mu\nu}(\ell)}{\ell^2 + i\epsilon}, \qquad L_{\mu\nu}(\ell) = g_{\mu\nu} - \frac{n_{\mu}\ell_{\nu} + \ell_{\mu}n_{\nu}}{\ell^+}$$

Higher multiplicity Higher loop order Summary

Trident process

Nonlinear trident is the $1 \rightarrow 3$ process $e^-(p) \rightarrow e^-(p_1) + e^-(p_2) + e^+(p_3)$:

Internal photon conveniently taken in lightfront gauge:

$$D_{\mu\nu}(\ell) = \frac{-iL_{\mu\nu}(\ell)}{\ell^2 + i\epsilon}, \qquad L_{\mu\nu}(\ell) = g_{\mu\nu} - \frac{n_{\mu}\ell_{\nu} + \ell_{\mu}n_{\nu}}{\ell^+}$$

On-shell / Off-shell split $L_{\mu\nu}(\ell) = L_{\mu\nu}(\ell^{\star}) - \frac{\ell^2}{\ell^+} n_{\mu} n_{\nu}$:

• $L_{\mu\nu}(\ell^*) \Longrightarrow \text{Causal "2-step process"} \qquad \sum_{\nu} \left| \underbrace{-}_{\nu} \underbrace$

•
$$\frac{\ell^2}{\ell^+}n_\mu n_
u$$
 Contact "1-step process"

[Ilderton: Phys. Rev. Lett. 106 (2011) 020404]

Higher multiplicity Higher loop order Summary

Double nonlinear Compton

Taken as a $1 \rightarrow 3$ process: $e^-(p) \rightarrow e^-(p_1) + \gamma(p_2) + \gamma(p_3)$

Lightfront integrals carried out numerically for plane wave background:

 $\xi\sim 1$ [Seipt, Kämpfer: Phys. Rev. D 85 (2012) 101701], $\xi\gg 1$ [Mackenroth, Di Piazza: Phys. Rev. Lett. 110 (7) (2013) 070402]

Differential cross section for single & double NLC at fixed emitted photon frequency. [Seipt, Kämpfer]

James P. Edwards Strong Field QED

Higher multiplicity Higher loop order Summary

Open worldlines

Higher multiplicity amplitudes involve multiple highly oscillatory integrals

- Locally Constant Field Approximation (LCFA): [Ilderton, King, Seipt: Phys. Rev. A 99 (4) (2019) 042121] Integrate rate in crossed constant fields (relativistic electron sees this!).
- Locally Monochromatic Field Approximation (LMA): [Heinzl, King, Macleod: Phys. Rev. A 102 (2020) 063110] Integrate rate in monochromatic field over pulse envelope
- Often modelled as chains of first-order, two-step processes ideal for simulation

Higher multiplicity Higher loop order Summary

Open worldlines

Higher multiplicity amplitudes involve multiple highly oscillatory integrals

- Locally Constant Field Approximation (LCFA): [Ilderton, King, Seipt: Phys. Rev. A 99 (4) (2019) 042121] Integrate rate in crossed constant fields (relativistic electron sees this!).
- Locally Monochromatic Field Approximation (LMA): [Heinzl, King, Macleod: Phys. Rev. A 102 (2020) 063110] Integrate rate in monochromatic field over pulse envelope
- Often modelled as chains of first-order, two-step processes ideal for simulation

Worldline formalism extended: open lines \implies *N*-photon tree level amplitudes

$$\mathcal{D}_{N} \sim \int_{0}^{\infty} dT \, \mathrm{e}^{-im^{2}T} \int \mathcal{D}x(\tau) \, V(k_{1},\varepsilon_{1}) \dots V(k_{N},\varepsilon_{N}) \, \mathrm{e}^{\frac{i}{\hbar} \int_{0}^{T} d\tau [-\frac{\dot{x}^{2}}{4} - a(x) \cdot \dot{x}(\tau)]}$$
(5)

Photon vertex operator: $V(k,\varepsilon) = \int_0^1 d\tau \,\varepsilon \cdot \dot{x} \,\mathrm{e}^{ik \cdot x(\tau)}$.

[Ahmadiniaz, JPE et al.: JHEP 08 (2020) 08, 049 & JHEP 01 (2022) 050]

[Ahmad et al.: Nucl.Phys.B 919 (2017) 9-24, Copinger, JPE et al.: 2311.14638 [hep-th]]

Higher multiplicity Higher loop order Summary

Vacuum polarisation

Loop effects encode non-trivial quantum vacuum: quantum fluctuations.

Photon polarisation tensor, $\Pi^{\mu\nu}(a) \Longrightarrow$ response of probe photon: [Toll: Thesis (1952)]

Higher multiplicity Higher loop order Summary

Vacuum polarisation

Loop effects encode non-trivial quantum vacuum: quantum fluctuations.

Photon polarisation tensor, $\Pi^{\mu\nu}(a) \Longrightarrow$ response of probe photon: [Toll: Thesis (1952)]

$$\Pi^{\mu\nu}(\ell,\ell'|a) \sim \frac{\delta^2 \Gamma[a+A^{\gamma}]}{\delta A^{\gamma}_{\mu}(\ell) \delta A^{\gamma}_{\nu}(\ell')} \Big|_{A^{\gamma}=0} \equiv \gamma \swarrow \sqrt{1-1}$$

• Vacuum birefringence: distinct dispersion relations for photon polarisations: Linear polarisation $n_{1,2}(\ell) \sim 1 - 16\pi^2 \alpha^2 c_{1,2} \frac{(\ell \cdot f)^2}{\ell^2 m^4} + \dots$ [Dinu et al.: Phys. Rev. D 89 (12) (2014) 125003, Macleod, JPE et al.: New J.Phys. 25 (2023) 9, 093002]

Helicity flip: genuine elastic scattering off background field.
 [Delbrück: Z. Phys. 84 (1933), 144, Schumacher et al.: Phys. Lett. B 59 (1975), 134]

Higher multiplicity Higher loop order Summary

Vacuum polarisation

Loop effects encode non-trivial quantum vacuum: quantum fluctuations.

Photon polarisation tensor, $\Pi^{\mu\nu}(a) \Longrightarrow$ response of probe photon: [Toll: Thesis (1952)]

$$\Pi^{\mu\nu}(\ell,\ell'|a) \sim \frac{\delta^2 \Gamma[a+A^{\gamma}]}{\delta A^{\gamma}_{\mu}(\ell) \delta A^{\gamma}_{\nu}(\ell')} \Big|_{A^{\gamma}=0} \equiv \gamma \wedge \mathcal{N}$$

• Vacuum birefringence: distinct dispersion relations for photon polarisations: Linear polarisation $n_{1,2}(\ell) \sim 1 - 16\pi^2 \alpha^2 c_{1,2} \frac{(\ell \cdot f)^2}{\ell^2 m^4} + \dots$ [Dinu et al.: Phys. Rev. D 89 (12) (2014) 125003, Macleod, JPE et al.: New J.Phys. 25 (2023) 9, 093002]

Helicity flip: genuine elastic scattering off background field.

[Delbrück: Z. Phys. 84 (1933), 144, Schumacher et al.: Phys. Lett. B 59 (1975), 134]

Lab experiments: PVLAS close to QED sensitivity [Della valle et al.: Phys. Rept. 871 1–74] HIBEF [Ahmadiniaz et al.: Phys. Rev. D 104 (2021), L011902]

SEL [Shen et al.: Plasma Phys. Control. Fusion 60 (2018), 044002]

Higher multiplicity Higher loop order Summary

Vacuum polarisation

Higher multiplicity Higher loop order Summary

Light-by-light

External fields allow additional processes mediated by virtual loops:

[Adler: Annals Phys. 67 (1971) 599, Papanyan, Ritus: Sov. Phys. JETP 34 (6) (1972) 1195

Adler, Schubert: Phys. Rev. Lett. 77 (1996), 1695, Di Piazza et al.: Phys. Rev. A 76 (2007), 032103]

• Light-by-light scattering enhancement

[Tennant: Phys. Rev. D 93 (12) (2016), 125032, Gies et al.: Phys. Rev. D 103 (7) (2021), 076009]

Higher multiplicity Higher loop order Summary

Light-by-light

External fields allow additional processes mediated by virtual loops:

[Adler: Annals Phys. 67 (1971) 599, Papanyan, Ritus: Sov. Phys. JETP 34 (6) (1972) 1195

Adler, Schubert: Phys. Rev. Lett. 77 (1996), 1695, Di Piazza et al.: Phys. Rev. A 76 (2007), 032103]

• Light-by-light scattering enhancement

[Tennant: Phys. Rev. D 93 (12) (2016), 125032, Gies et al.: Phys. Rev. D 103 (7) (2021), 076009]

Low energy limit of four-photon amplitude more accessible:

Lowest order contribution to vacuum polarisation!

[Ahmadiniaz et al.: Phys. Rev. D 108 (2023) 7, 076005 and Ahmadiniaz et al.: Nucl.Phys.B 991 (2023) 116216]

Partially off-shell process detected at ATLAS

[Aaboud et al.: Nature Phys. 13 (9) (2017) 852, Aad, et al.: Phys. Rev. Lett. 123 (5) (2019) 052001]

3 Contributes to g-2 at $\mathfrak{L} \ge 3$ loop order

Higher multiplicity Higher loop order Summary

Closed worldlines

First quantised approach also well-suited to calculating loop corrections:

$$\Gamma[a] = -\frac{1}{2} \int_0^\infty \frac{dT}{T} \mathrm{e}^{-im^2 T} \oint_{\mathrm{PBC}} \mathscr{D}x(\tau) \oint_{ABC} \mathscr{D}\psi(\tau) \, \mathrm{e}^{\frac{i}{\hbar} S_{\mathrm{WL}}[x,\psi] + \text{Internal Photons}}$$

- 1-loop effective action calculated in constant field [Schmidt, Schubert: Phys. Lett. B 318 (1993), 438]
- Master Formulae for N-photon scattering [Reuter et al.:, Ann. Phys. (N.Y.) 259 (1997), 313]
- · Generalised to plane wave background only recently

[JPE, Schubert: Phys. Lett. B 822 (2021), 136696 and Schubert, Shaisultanov: Phys. Lett. B 843 (2023), 137969]

Higher multiplicity Higher loop order Summary

Euler-Heisenberg

Resurgence in higher-loop calculations of Euler-Heisenberg Lagrangian:

$$\Gamma_{\rm EH}[a] = \int d^D x \, \mathcal{L}_{\rm EH}(f^2, \tilde{f}^2, \partial^2 f^2, \ldots) \,.$$

• For D = 4: Two-loops with zero derivatives [Ritus: Sov. Phys. JETP 42 (5) (1975) 774] Known to one-loop at quadratic in derivatives

[Karbstein: JHEP 09 (2021) 070, Dunne, Schubert: Nucl. Phys. B 564 (2000) 591]

• Higher-loop results for constant fields / self-dual fields

[Huet et al.: Adv. High Energy Phys. 2017 (2017) 6214341, Dunne, Schubert: Phys. Lett. B526 (2002), 55]

• Three-loop results obtained in lower dimensions [Huet et al.: JHEP 03 (2019) 167]

Higher multiplicity Higher loop order Summary

Euler-Heisenberg

Resurgence in higher-loop calculations of Euler-Heisenberg Lagrangian:

$$\Gamma_{\rm EH}[a] = \int d^D x \, \mathcal{L}_{\rm EH}(f^2, \tilde{f}^2, \partial^2 f^2, \ldots) \,.$$

• For D = 4: Two-loops with zero derivatives [Ritus: Sov. Phys. JETP 42 (5) (1975) 774] Known to one-loop at quadratic in derivatives

[Karbstein: JHEP 09 (2021) 070, Dunne, Schubert: Nucl. Phys. B 564 (2000) 591]

• Higher-loop results for constant fields / self-dual fields

[Huet et al.: Adv. High Energy Phys. 2017 (2017) 6214341, Dunne, Schubert: Phys. Lett. B526 (2002), 55]

• Three-loop results obtained in lower dimensions [Huet et al.: JHEP 03 (2019) 167]

Recent discovery: 1PR contributions to \mathcal{L}_{EH} in constant fields...

[Gies, Karbstein: JHEP 03 (2016)]

[Karbstein: JHEP 10 (2017) 075]

[JPE, Schubert: Nucl. Phys. B 923 (2017) 339]

[Ahmadiniaz, JPE et al.: Nucl. Phys. B 924 (2017) 377]

[Huet, JPE et al.: Nucl. Phys. B935 (2018) 19]

• 1PR contributions found to be **dominant** in strong field limit!

[Karbstein: Phys. Rev. Lett. 122 (21) (2019) 211602]

Higher multiplicity Higher loop order Summary

Ritus-Narozhny Conjecture

Large ξ , χ limits of NLC & NLBW rates scale as $\alpha \chi^{\frac{2}{3}}$.

• General conjecture for crossed constant fields (LCFA):

 $\alpha \to \alpha \chi^{\frac{2}{3}} \Longrightarrow$ Breakdown of strong field Furry expansion for large $\chi \gtrsim 1600$.

[Ritus: Ann. Phys. 69 (2) (1972) 555, Narozhny: Phys. Rev. D21 (4) (1980) 1176]

Asymptotic results in CCF (1969-1980).

From [Mironov et al.: Phys. Rev. D 102 (2020), 053005]

• Already known not to hold in some processes away from CCF limit.

[Podszus, Di Piazza: Phys. Rev. D 99 (2019), 076004, Ilderton: Phys. Rev. D 100 (2019), 125018]

Even in CCF – not seen for inclusive observables [JPE, Ilderton: Phys. Rev. D 103 (2021) 1, 01600]

Higher multiplicity Higher loop order Summary

Resummation

State of the art: all-orders resummation of vac. pol. "bubble diagrams"

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

• Mass operator for on-shell incoming particle (maximal saturation)

Higher multiplicity Higher loop order Summary

Resummation

State of the art: all-orders resummation of vac. pol. "bubble diagrams"

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

• Mass operator for on-shell incoming particle (maximal saturation)

One-loop vacuum polarisation known analytically in CCF
 Part of it implies a running of electric charge (logarithmic in χ).

Higher multiplicity Higher loop order Summary

Resummation

State of the art: all-orders resummation of vac. pol. "bubble diagrams"

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

• Mass operator for on-shell incoming particle (maximal saturation)

- One-loop vacuum polarisation known analytically in CCF
 Part of it implies a running of electric charge (logarithmic in χ).
- Strong field limit: each loop contributes factor $\propto \alpha \chi^{\frac{2}{3}}$.

Higher multiplicity Higher loop order Summary

Resummation

State of the art: all-orders resummation of vac. pol. "bubble diagrams"

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

• Mass operator for on-shell incoming particle (maximal saturation)

- One-loop vacuum polarisation known analytically in CCF
 Part of it implies a running of electric charge (logarithmic in χ).
- Strong field limit: each loop contributes factor $\propto \alpha \chi^{\frac{4}{3}}$.
- At $\mathfrak{L} \ge 1$ -loop order: bubble chain scales as $\chi^{-\frac{1}{3}}(\alpha \chi^{\frac{2}{3}})^{\mathfrak{L}}$.

Higher multiplicity Higher loop order Summary

Resummation

State of the art: all-orders resummation of vac. pol. "bubble diagrams"

[Mironov et al. Phys. Rev. D 102 (2020), 053005]]

• Mass operator for on-shell incoming particle (maximal saturation)

- One-loop vacuum polarisation known analytically in CCF
 Part of it implies a running of electric charge (logarithmic in χ).
- Strong field limit: each loop contributes factor $\propto \alpha \chi^{\frac{2}{3}}$.
- At $\mathfrak{L} \ge 1$ -loop order: bubble chain scales as $\chi^{-\frac{1}{3}} (\alpha \chi^{\frac{2}{3}})^{\mathfrak{L}}$.
- Resummed result in non-pertrubative limit: dominant contributions scale as $\chi^{-\frac{1}{3}} (\alpha \chi^{\frac{2}{3}})^{\frac{3}{2}}$ and $\chi^{-\frac{1}{3}} (\alpha \chi^{\frac{2}{3}})^2$

Recent work validating treatment of vertex provided at one-loop order.

[Di Piazza, Lopez-Lopez: Phys. Rev. D 102 (7) (2020) 076018]

Higher multiplicity Higher loop order Summary

Conclusion

Strong field QED - an open window onto nonlinear effects in QED!

Non-perturbative aspects of QED can be probed at relatively low energies by *enhancing* vacuum coupling.

Main points:

- Low order processes already part of experimental searches
- e Higher multiplicity processes relevant for cascades
- Loop effects expose nonlinear nature of quantum vacuum
- Vacuum birefringence target of upcoming laser experiments

An invitation:

Worldline Formalism – especially useful for studying higher order processes. [JPE, Schubert: arXiv:1912.10004 [hep-th]]

Higher multiplicity Higher loop order Summary

Not mentioned

Many other interesting aspects of this field:

- Details beyond plane waves: non-null fields, focussing etc
- Numerical simulations: Particle in Cell codes
- Semi-classical approaches (worldline instantons) Very useful for studying the effective action!

My key question:

Higher multiplicity Higher loop order Summary

Not mentioned

Many other interesting aspects of this field:

- Details beyond plane waves: non-null fields, focussing etc
- Numerical simulations: Particle in Cell codes
- Semi-classical approaches (worldline instantons) Very useful for studying the effective action!

My key question:

¿Will we be able to probe non-perturbative effects like Schwinger pair creation?

Higher multiplicity Higher loop order Summary

Not mentioned

Many other interesting aspects of this field:

- Details beyond plane waves: non-null fields, focussing etc
- Numerical simulations: Particle in Cell codes
- Semi-classical approaches (worldline instantons) Very useful for studying the effective action!

My key question:

¿Will we be able to probe non-perturbative effects like Schwinger pair creation?

¡Thank you for your attention!

Additional Slides

CPA

Chirped Pulse Amplification – 2018 Nobel Prize

[Strickland, Mourou: Opt Commun. 56 (1985), 219.]

Figure: Schematic of CPA: ultra-short laser pulse amplified to PW level [Science and Technology Review: LLNL, Sept 1985]

Worldline Master Formulae

All multiplicity results obtained for tree level amplitudes:

• Master formulae obtained in constant fields: [Ahmad et al.: Nucl.Phys.B 919 (2017) 9-24]

$$D^{pp'}(F \mid k_1, \varepsilon_1; \cdots; k_N, \varepsilon_N) = (-ie)^N (2\pi)^D \delta\left(p + p' + \sum_{i=1}^N k_i\right) \int_0^\infty dT \, \mathrm{e}^{-m^2 T} \frac{1}{\det^{\frac{1}{2}} \left[\cos\mathcal{Z}\right]} \\ \times \int_0^T d\tau_1 \cdots \int_0^T d\tau_N \, \mathrm{e}^{\sum_{i,j=1}^N \left(k_i \underbrace{\Delta}_{ij} k_j - 2i\varepsilon_i \underbrace{\Delta}_{ij} k_j - \varepsilon_i \underbrace{\Delta}_{ij} e_j\right)} \, \mathrm{e}^{-Tb\left(\frac{\tan\mathbb{Z}}{2}\right)} \Big|_{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_N}$$

• LSZ-amputated formulae obtained for plane waves: [Copinger, JPE et al.: 2311.14638 [hep-th]]

$$\begin{aligned} \mathcal{A}_{N}^{p'p} &= (-ie)^{N} (2\pi)^{3} \delta_{\perp,-} (\bar{p}' + K - p) \int_{-\infty}^{\infty} \mathrm{d}x^{+} e^{i(K+p'-p)_{+}x^{+}} \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\tau_{i} \, \delta \left(\sum_{j=1}^{N} \frac{\tau_{j}}{N} \right) \\ &\times \mathrm{e}^{-i \int_{-\infty}^{0} [2\bar{p}' \cdot a(\tau) - a^{2}(\tau)] \mathrm{d}\tau - i \int_{0}^{\infty} [2p' \cdot \delta a(\tau) - \delta a^{2}(\tau)] \mathrm{d}\tau - 2i \sum_{i=1}^{N} [\int_{-\infty}^{\tau_{i}} k_{i} \cdot a(\tau) \mathrm{d}\tau - i\varepsilon_{i} \cdot a(\tau_{i})]} \\ &\times e^{i(\bar{p}' + p) \cdot g - i \sum_{i,j=1}^{N} \left(\frac{|\tau_{i} - \tau_{j}|}{2} k_{i} \cdot k_{j} - i \operatorname{sgn}(\tau_{i} - \tau_{j}) \varepsilon_{i} \cdot k_{j} + \delta(\tau_{i} - \tau_{j}) \varepsilon_{i} \cdot \varepsilon_{j} \right)} \right|_{\mathrm{lin. } \varepsilon} \end{aligned}$$

Note: Momentum and lightfront integrals \implies Schwinger proper time integrals!