ALESSANDRO BACCHETTA, PAVIA U. AND INFN MULTIDIMENSIONAL STRUCTURE OF THE PROTON AND OPPORTUNITIES AT A NEW ELECTRON ION COLLIDER

THE EIC PROJECT

EXECUTIVE SUMMARY

The EIC is a new electron-ion collider to be built by 2035 at Brookhaven National Laboratory.
Its main goal is to study the structure of nucleons and nuclei.

DETAILED MATERIAL

https://www.eicug.org

RECOMMENDATION 3

We recommend the expeditious completion of the EIC as the highest priority for facility construction.

The EIC is a powerful discovery machine, a precision microscope capable of taking three-dimensional pictures of nuclear matter at femtometer scales.

To achieve the scientific goals of the EIC, a parallel investment in quantum chromodynamics (QCD) theory is essential,.

Progress in theory and computing has already helped to drive and refine the physics program of the EIC.
To maximize the scientific impact of the facility and to prepare for the precision expected at the EIC, theory must advance on multiple fronts, and new collaborative efforts are required.

Google

Partnership:

BROOKHRNEN

NATIONAL LABORATORY

Jefferson Lab

Partnership:

BROOKHRNEN
NATIONAL LABORATORY

Jefferson Lab

protons to uranium
electrons
protons to uranium
electrons

70\% polarization
70\% polarization
protons to uranium
electrons

70\% polarization

41-275 GeV

70\% polarization

5-18 GeV

LUMINOSITY AND C.O.M. ENERGY

- high luminosity $\sim 1033-34 \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$
- wide energy range $\sqrt{s} \sim 29-140 \mathrm{GeV}$

INTERNATIONAL COMMUNITY (EIC USER GROUP)

https://www.eicug.org

Phonebook statistics

I. EIC User Group:

- 1435 members
- 295 institutions
- 40 countries (6 world regions)

Experiment Scientists: 905, Theory Scientists: 363, Accelerator Scientists: 151, Computer Scientists: 10, Support: 3, Other: 3

EIC USER GROUP MEMBERS

you are here $\left.\right|^{2025}$

COSTS

1.7-2.8 billion US dollars (source: DOE)

1.7-2.8 billion US dollars (source: DOE)

- FAIR: 2.5 billion US dollars (source: Wikipedia)

1.7-2.8 billion US dollars (source: DOE)

- FAIR: 2.5 billion US dollars (source: Wikipedia)
- Einstein Telescope: 2 billion US dollars (source: Scientific American)

1.7-2.8 billion US dollars (source: DOE)

- FAIR: 2.5 billion US dollars (source: Wikipedia)
- Einstein Telescope: 2 billion US dollars (source: Scientific American)
- James Webb Telescope: 10 billion US dollars (source: Wikipedia)

1.7-2.8 billion US dollars (source: DOE)

- FAIR: 2.5 billion US dollars (source: Wikipedia)
- Einstein Telescope: 2 billion US dollars (source: Scientific American)
- James Webb Telescope: 10 billion US dollars (source: Wikipedia)
- FCC: 20 billion US dollars (source: Wikipedia)

DETECTOR (OR DETECTORS)

epric)

Collaboration

24 countries
171 Institutions
500+ members

WHAT DO WE WANT TO DO WITH THE EIC?

1) How are partons with their spins distributed in space and momentum inside the nucleon, such that its properties emerge from their interactions?

2) How are partons with their spins distributed in space and momentum inside the nucleon, such that its properties emerge from their interactions?

Nucleon "femtography"

1) How are partons with their spins distributed in space and momentum inside the nucleon, such that its properties emerge from their interactions?

Nucleon "femtography"

2) How do colored partons propagate and interact with nuclear medium such that eventually colorless hadrons emerge?
3) How are partons with their spins distributed in space and momentum inside the nucleon, such that its properties emerge from their interactions?

Nucleon "femtography"
2) How do colored partons propagate and interact with nuclear medium such that eventually colorless hadrons emerge?

Mechanisms of color confinement and nuclear binding

1) How are partons with their spins distributed in space and momentum inside the nucleon, such that its properties emerge from their interactions?

Nucleon "femtography"

2) How do colored partons propagate and interact with nuclear medium such that eventually colorless hadrons emerge?

Mechanisms of color confinement and nuclear binding

3) Does gluon density saturate at high energy, giving rise to a universal gluonic matter?
4) How are partons with their spins distributed in space and momentum inside the nucleon, such that its properties emerge from their interactions?

Nucleon "femtography"

2) How do colored partons propagate and interact with nuclear medium such that eventually colorless hadrons emerge?

Mechanisms of color confinement and nuclear binding

3) Does gluon density saturate at high energy, giving rise to a universal gluonic matter?

Gluon saturation

NUCLEON FEMTOGRAPHY

Parton Distribution Functions (PDFs)

$f(x)$
1 dimensional (+scale)

Transverse-Momentum Distributions (TMDs)

$f\left(x, \vec{k}_{T}\right)$
3 dimensional (+ 2 scales)

Wigner Distributions

$f\left(x, \vec{k}_{T}, \vec{x}_{T}\right)$

5 dimensional (+ 2 scales)

MULTIDIMENSIONAL PARTONIC MAPS

Wigner distributions
(Fourier transform of
GTMDs = Generalized
Transverse Momentum Distributions)

MULTIDIMENSIONAL PARTONIC MAPS

Wigner distributions
(Fourier transform of
GTMDs = Generalized
Transverse Momentum Distributions)

TMDs

MULTIDIMENSIONAL PARTONIC MAPS

Wigner distributions
(Fourier transform of
GTMDs = Generalized
Transverse Momentum Distributions)

TMDs

Fourier transform of Generalized Parton Distributions

MULTIDIMENSIONAL PARTONIC MAPS

Wigner distributions
(Fourier transform of
GTMDs = Generalized
Transverse Momentum Distributions)

Fourier transform of Generalized Parton Distributions

Fourier transform of Form Factors

HOW TO RECONSTRUCT THESE MAPS?

Inclusive DIS

Inclusive DIS

access to
Parton Distribution Functions

Inclusive DIS

access to
Parton Distribution Functions

Inclusive DIS

access to
Parton Distribution Functions

Semi-Inclusive DIS

access to
Transverse Momentum Distributions

Inclusive DIS

access to
Parton Distribution Functions
access to
Transverse Momentum Distributions

Exclusive processes

Inclusive DIS

access to
Parton Distribution Functions

access to
Generalized Parton Distributions
access to
Transverse Momentum Distributions

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

QCD: the WILD SIDE of the Standard Model

QCD: the WILD $\mathbb{S I D E}$ of the Standard Model

there are more things that we cannot explain than we can explain...

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Uranus's longitude predictions

Without Neptune

With Neptune

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Check predictions

$$
\mathcal{L}_{\mathrm{QCD}}=\sum_{q} \bar{\psi}_{q}(i \not \partial-g \not A+m) \psi_{q}-\frac{1}{4} G_{\mu \nu}^{a} G_{a}^{\mu \nu}
$$

Check predictions

PRESENT KNOWLEDGE

Parton Distribution Functions

$f(x)$
1 dimensional (+scale)

Standard collinear PDFs describe the distribution of partons in one dimension in momentum space.

They are extracted through global fits

KINEMATIC COVERAGE OF DATA USED FOR PDF FITS

KINEMATIC COVERAGE OF DATA USED FOR PDF FITS

Fair agreement, but far from perfect

COMPARISON OF FULL PDF WITH LATTICE QCD

Alexandrou, Cichy, Constantinou, Hadjiyiannakou, Jansen, Scapellato, Steffens, arXiv:1902.00587

EIC IMPACT ON UNPOLARIZED PDFS

EIC IMPACT ON POLARIZED PDFS

EIC IMPACT ON POLARIZED PDFS

EIC IMPACT ON POLARIZED PDFS

EIC IMPACT ON SPIN SUM RULE

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta g+L
$$

EIC IMPACT ON SPIN SUM RULE

$$
\begin{aligned}
& \text { quark spin } \\
& \frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta g+L, L
\end{aligned}
$$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta g+L
$$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta g+L
$$

CAN THERE STLLL BE SURPRISES?

STRONG PARITY VIOLATING PDFS?

APV asymmetry (with polarized leptons)

Apv asymmetry (with polarized leptons)

Fit with the inclusion of a strong parity violating parton distribution function

APV asymmetry (with polarized leptons)

Precise DIS data may expose signals of strong parity violation

Standard Model prediction

Fit with the inclusion of a strong parity violating parton distribution function

3-DIMENSIONAL MAPS

Transverse-Momentum Distributions

$f\left(x, \vec{k}_{T}\right)$
3 dimensional (+ 2 scales)

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right) \\
& \hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text {resum }}+g_{K}}}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right) \\
& \left.\hat{f}_{1}^{a}\left(x, b_{T}^{2} ; \mu_{f}, \zeta_{f}\right)=\left[C \otimes f_{1}\right]\left(x, \mu_{b_{*}}\right) e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d \mu}{\mu}\left(\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\mu}\right.}\right)\left(\frac{\sqrt{\zeta_{f}}}{\mu_{b_{*}}}\right)^{K_{\text {resum }}+g_{K}} \\
& \mu_{b}=\frac{2 e^{-\gamma_{E}}}{b_{T}}
\end{aligned}
$$

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

$$
\hat{f}_{1}^{a}\left(x,\left|\boldsymbol{b}_{T}\right| ; \mu, \zeta\right)=\int d^{2} \boldsymbol{k}_{\perp} e^{i \boldsymbol{b}_{T} \cdot \boldsymbol{k}_{\perp}} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu, \zeta\right)
$$

perturbative Sudakov form factor

$$
\mu_{b^{*}}=\frac{2 e^{-\gamma_{E}}}{\bar{b}_{*}}
$$

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	$\chi^{2} / \mathrm{N}_{\text {points }}$
$\begin{gathered} \text { Pavia } 2017 \\ \text { arXiv:1703.10157 } \end{gathered}$	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8059	1.55
$\begin{gathered} \text { SV } 2019 \\ \text { arXiv:1912.06532 } \end{gathered}$	N3LL-	\checkmark	\checkmark	\checkmark	\checkmark	1039	1.06
$\begin{gathered} \text { MAP22 } \\ \text { arXiv:2206.07598 } \end{gathered}$	N3LL-	\checkmark	\checkmark	\checkmark	\checkmark	2031	1.06

FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the 68% CL.

FIG. 13: The TMD PDF of the up quark in a proton at $\mu=\sqrt{\zeta}=Q=2 \mathrm{GeV}$ (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $\left|\boldsymbol{k}_{\perp}\right|$ for $x=0.001,0.01$ and 0.1 . The uncertainty bands represent the 68% CL.

CONNECTIONS WITH LATIICE QCD: COLLINS-SOPER KERNEL

CONNECTIONS WITH LATIICE QCD: COLLINS-SOPER KERNEL

TMD phenomenology

CONNECTIONS WITH LATIICE QCD: COLLINS-SOPER KERNEL

CONNECTIONS WITH LATTICE QCD: COLLINS-SOPER KERNEL

Avkhadiev, Shanahan, Wagman, Zhao, arXiv:2307.12359

TMD phenomenology
Lattice OCD

CHECK LATIICE QCD PREDICTIONS

Lattice OCD

TMD pheno

EIC

Uranus's longitude predictions

Without Neptune

With Neptune

TMDS AND W MASS

$$
\begin{aligned}
m_{W} & =80370 \pm 7(\text { stat. }) \pm 11(\text { exp. syst. }) \pm 14(\text { mod. syst. }) \mathrm{MeV} \\
& =80370 \pm 19 \mathrm{MeV} \\
m_{W^{+}} & -m_{W^{-}}=-29 \pm 28 \mathrm{MeV} .
\end{aligned}
$$

TMDS AND W MASS

$$
\begin{aligned}
m_{W} & =80370 \pm 7(\text { stat. }) \pm 11 \text { (exp. syst.) } \pm 14(\text { mod. syst.) } \mathrm{MeV} \\
& =80370 \pm 19 \mathrm{MeV} \\
m_{W^{+}} & -m_{W^{-}}=-29 \pm 28 \mathrm{MeV} .
\end{aligned}
$$

All analyses assume that TMDs

 are not flavor dependent. What happens if they are?Try some judicious choices of flavour dependent widths and check

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

narrow, medium, large narrow, large, narrow large, narrow, large large, medium, narrow medium, narrow, large

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s	
1	0.34	0.26	0.46	0.59	0.32	narrow, medium, large
2	0.34	0.46	0.56	0.32	0.51	narrow, large, narrow
3	0.55	0.34	0.33	0.55	0.30	large, narrow, large
4	0.53	0.49	0.37	0.22	0.52	edium, narrow
5	0.42	0.38	0.29	0.57	0.27	medium, narrow, large

They all describe the Z spectrum very well

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s	
1	0.34	0.26	0.46	0.59	0.32	
2	0.34	0.46	0.56	0.32	0.51	
narrow, medium, large						
3	0.55	0.34	0.33	0.55	0.30	
large, narrow, larrow						
4	0.53	0.49	0.37	0.22	0.52	
large, medium, narrow						
5	0.42	0.38	0.29	0.57	0.27	
largen						
medium, narrow, large						

They all describe the Z spectrum very well

	$\Delta M_{W^{+}}$	$\Delta M_{W^{-}}$		
Set	m_{T}	$p_{T \ell}$	m_{T}	$p_{T \ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

Try some judicious choices of flavour dependent widths and check

Set	u_{v}	d_{v}	u_{s}	d_{s}	s
	narrow, medium, large				
1		0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
large, narrow, large, narrow					
large, medium, narrow					
medium, narrow, large					

They all describe the Z spectrum very well

	$\Delta M_{W^{+}}$	$\Delta M_{W^{-}}$		
Set	m_{T}	$p_{T \ell}$	m_{T}	$p_{T \ell}$
1	0	-1	-2	3
2	0	-6	-2	0
3	-1	9	-2	-4
4	0	0	-2	-4
5	0	4	-1	-3

Not taking into account the flavor dependence of TMDs can lead to errors in the determination of the W mass, of the order of a few MeVs

$\mathrm{Q}=2 \mathrm{GeV}$
Bacchetta, Delcarro,
Pisano, Radici,
arXiv:2004.14278

$$
\mathrm{Q}=2 \mathrm{GeV}
$$

Bacchetta, Delcarro,
Pisano, Radici,
arXiv:2004.14278

(a)

Bury, Prokudin,
Vladimirov,
arXiv:2103.03270

A picture of a black hole (2019)

A picture of a black hole (2019)

A picture of a proton (2020)

TECHNOLOGY?

Our world is made of electrons, photons, quarks, and gluons: I believe we will find ways to use them before we use the Higgs bosons or black holes.

CONCLUSIONS

- The EIC will be a groundbreaking machine for OCD studies
- The EIC will be a groundbreaking machine for OCD studies
- I discussed some opportunities to study the multidimensional structure of nucleons, but there are many more
- The EIC will be a groundbreaking machine for OCD studies
- I discussed some opportunities to study the multidimensional structure of nucleons, but there are many more
- Results can be used to check lattice OCD predictions and look for new physics
- The EIC will be a groundbreaking machine for OCD studies
- I discussed some opportunities to study the multidimensional structure of nucleons, but there are many more
- Results can be used to check lattice OCD predictions and look for new physics
- The long-term goal is the capability of computing the multidimensional structure of the nucleon, and eventually of the nucleus, and the hadronization process, all based on OCD

BACKUP

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

$$
\left|k_{\perp}\right| \sim \Lambda_{\mathrm{QCD}} \quad\left|k_{\perp}\right| \ll Q
$$

DIFFERENT CONTRIBUTIONS TO TRANSVERSE MOMENTUM

LOGARITHMIC ACCURACY

Sudakov form factor

$$
\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)
$$

Sudakov form factor
$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
$\mathrm{NLL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$

Sudakov form factor
$\mathrm{LL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
$\mathrm{NLL} \quad \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), \quad \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)$
matching coeff.

Sudakov form factor
$\begin{array}{ccc}\mathrm{LL} & \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right) & C^{0} \\ \mathrm{NLL} & \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), & \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)\end{array}$
matching coeff.

$$
\left(C^{0}+\alpha_{S} C^{1}\right)
$$

Sudakov form factor

$$
\begin{array}{ccc}
\mathrm{LL} & \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right) & C^{0} \\
\mathrm{NLL} & \alpha_{S}^{n} \ln ^{2 n}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right), & \alpha_{S}^{n} \ln ^{2 n-1}\left(\frac{Q^{2}}{\mu_{b}^{2}}\right)
\end{array}
$$

$$
\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right)
$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

LOW-b ${ }_{T}$ MODIFICATIONS

see, e.g., Bozzi, Catani, De Florian, Grazzini
$\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right)$
hep-ph/0302104

$$
b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right)=\sqrt{\frac{b_{\mathrm{T}}^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2}\right)}{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}}
$$

$$
b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}}
$$

Collins et al.
arXiv: 1605.00671

$$
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
$$

$$
\begin{aligned}
\mu_{0} & =1 \mathrm{GeV} \\
b_{*} & \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}}
\end{aligned}
$$

$$
\begin{gathered}
\mu_{0}=1 \mathrm{GeV} \\
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

$$
\begin{gathered}
\mu_{0}=1 \mathrm{GeV} \\
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

These are all choices that should be at some point checked/challenged

$$
\begin{gathered}
\hat{f}_{1}^{q}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(C_{q i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{q}\left(x, b_{T}\right) \\
\mu_{0}=1 \mathrm{GeV} \\
b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad \text { Collins, Soper, Sterman, NPB250 (85) } \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

These are all choices that should be at some point checked/challenged

$$
\begin{aligned}
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max } & =2 e^{-\gamma_{E}} \\
b_{\min } & =\frac{2 e^{-\gamma_{E}}}{Q}
\end{aligned}
$$

$$
\begin{aligned}
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max } & =2 e^{-\gamma_{E}} \\
b_{\min } & =\frac{2 e^{-\gamma_{E}}}{Q}
\end{aligned}
$$

No significant effect at high Q , but large effect at low Q (inhibits perturbative contribution)

The prefactor is independent of the fitting parameters

The prefactor is independent of the fitting parameters

Higher-order corrections decrease the role of the TMD region. We need to enhance it with a prefactor.

$$
\begin{aligned}
\left.\frac{\mathrm{d} \sigma^{h}}{\mathrm{~d} x \mathrm{~d} Q^{2} \mathrm{~d} z}\right|_{O\left(\alpha_{s}^{1}\right)} & =\sigma_{0} \sum_{f f^{\prime}} \frac{e_{f}^{2}}{z^{2}}\left(\delta_{f^{\prime} f}+\delta_{f^{\prime} g}\right) \frac{\alpha_{s}}{\pi}\left\{\left[D_{1}^{h / f^{\prime}} \otimes C_{1}^{f^{\prime} f} \otimes f_{1}^{f / N}\right](x, z, Q)\right. \\
& \left.+\frac{1-y}{1+\frac{y}{\prime 2}}\left[D^{h / f^{\prime}} e_{L}^{f^{\prime} f} \otimes f_{1}^{\prime ग / N}\right](x, z, Q)\right\} \\
C_{1}^{q q} & =\frac{C_{F}}{2}\{-8 \delta(1-x) \delta(1-z) \\
& +\delta(1-x)\left[P_{q q}(z) \ln \frac{Q^{2}}{\mu_{F}^{2}}+L_{1}(z)+L_{2}(z)+(1-z)\right] \\
& +\delta(1-z)\left[P_{q q}(x) \ln \frac{Q^{2}}{\mu^{2}}+L_{1}(x)-L_{2}(x)+(1-x)\right] \\
& \left.+2 \frac{1}{(1-x)_{+}} \frac{1}{\left(1-\frac{1+z}{(1-x)_{+}}(1-z)_{+}\right.}+2(1+x z)\right\}
\end{aligned}
$$

x - Q2² COVERAGE

MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov,
arXiv:1912.06532

$x-Q^{2}$ COVERAGE

MAP Collaboration
Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

Scimemi, Vladimirov, arXiv:1912.06532

Data set	$N_{\text {dat }}$	$\chi_{D}^{2} / N_{\text {dat }}$	$\chi_{\lambda}^{2} / N_{\text {dat }}$	$\chi_{0}^{2} / N_{\text {dat }}$
Tevatron total	71	0.87	0.06	0.93
LHCb total	21	1.15	0.3	1.45
ATLAS total	72	4.56	0.48	5.05
CMS total	78	0.53	0.02	0.55
PHENIX 200	2	2.21	0.88	3.08
STAR 510	7	1.05	0.10	1.15
DY collider total	251	1.86	0.2	2.06
DY fixed-target total	233	0.85	0.4	1.24
HERMES total	344	0.48	0.23	0.71
COMPASS total	1203	0.62	0.3	0.92
SIDIS total	1547	0.59	0.28	0.87
Total	$\mathbf{2 0 3 1}$	$\mathbf{0 . 7 7}$	$\mathbf{0 . 2 9}$	$\mathbf{1 . 0 6}$

: $=$ README.md

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:
https://github.com/MapCollaboration/NangaParbat
For the last development branch you can clone the master code:

: $=$ README.md
-

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:
https://github.com/MapCollaboration/NangaParbat
For the last development branch you can clone the master code:

Also:

ARTEMIDE

https://teorica.fis.ucm.es/artemide/

TMDIB

https://tmdlib.hepforge.org/

First direct measurement of TMD effects in fragmentation functions Makes use of thrust axis: the formalism should take it into account

First direct measurement of TMD effects in fragmentation functions Makes use of thrust axis: the formalism should take it into account

See https://arxiv.org/abs/2206.08876

Bury, Hautmann, Leal-Gomez, Scimemi, Vladimirov, Zurita, arxiv:2201.07114

Bury, Hautmann, Leal-Gomez, Scimemi, Vladimirov, Zurita, arxiv:2201.07114

There seems to be a lot of room for flavor dependence. Different collinear PDFs lead to different results...

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Ratio width of down valence/ width of up valence

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

There is room for flavour dependence, but we don't control it well

Ratio width of down valence/ width of up valence

ORBITAL ANGULAR MOMENTUM AND WIGNER DISTRIBUTIONS

Only way to provide direct access to partonic orbital angular momentum
$\mathcal{L}_{z}^{q}=\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)$

related to orbital angular
momentum

related to orbital angular Lensing function
momentum (final-state interaction)

Burkardt, Hwang, PRD69 (04)
Lu, Schmidt, PRD75 (07)
Bacchetta, Conti, Radici, PRD 78 (08)

This relation holds only in simple models

$$
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right)=-\frac{3 M C_{F} \alpha_{S}}{2(1-x)} E^{a}\left(x, 0,0 ; Q_{L}^{2}\right)
$$

Lensing function (flavor independent)

Burkardt, Hwang, PRD69 (04)
Lu, Schmidt, PRD75 (07)
Bacchetta, Conti, Radici, PRD 78 (08)

This relation holds only in simple models

Other results obtained through form factors + assumptions

D Diehl \& Kroll, arXiv:1302.4604
\square Guidal et al., PR D72 (05) 054013
\square Liuti et al., PRD 84 (11) 034007
\square Bacchetta \& Radici, PRL 107 (11) 212001

Estimate of angular momentum based on model assumptions + Sivers fit

Other results obtained through form factors + assumptions

Diehl \& Kroll, EPJ C73 (13) 2397
\square Goloskokov \& Kroll, EPJ C59 (09) 809
\square Bacchetta \& Radici, PRL 107 (11) 21200

Estimate of angular momentum based on model assumptions + Sivers fit

Estimate of angular momentum based on model assumptions + Sivers fit

Estimate of angular momentum based on model assumptions + Sivers fit

