Machine Learning Methods

in

Lattice Gauge Theories

Gurtej Kanwar

Institute for Theoretical Physics, AEC, U. Bern

Stokes, Kamleh, Leinweber 1312.0991 WALL-E (2008) Pixar, please don't sue me

Dec 12-14, 2023 **UK Annual Theory Meeting**

Lattices to regulate QFTs

- Electroweak effects and hard QCD processes can be treated perturbatively
- Low-energy QCD effects must be treated non-perturbatively
- Lattice field theory
 - Euclidean path integral on a spacetime lattice
 - Lattice spacing *a* cuts off UV divergences
 - Numerically evaluate, then extrapolate $a \rightarrow 0$

https://evanberkowitz.com/2018/05/30/gA.html

Lattice QCD

- Hadronic spectrum
 - Heavy resonances
- Hadronic structure
 - PDFs and their generalizations
 - Form factors
- New physics searches
 - Muon g-2

- Heavy meson decays

Lattice field theory

Discretized path integral:

- Degrees of freedom assigned to points and edges of a lattice
- Boltzmann weight $e^{-S(\phi)}$ encodes distribution over "typical" configurations

Partition function

$$Z \equiv \left[\prod_{x} \int_{-\infty}^{\infty} d\phi(x)\right] e^{-S(\phi)}$$
hermal expt. value
of operator \mathcal{O}
 $\langle \mathcal{O} \rangle = \left[\prod_{x} \int_{-\infty}^{\infty} d\phi(x)\right] \mathcal{O}(\phi)$

 \boldsymbol{X}

Lattice gauge field configuration (2D slice)

Monte Carlo simulation

Approximate the path integral using Markov chain Monte Carlo

..''

 $\langle \mathcal{O} \rangle = \frac{1}{Z} \left[\prod_{x} \int_{-\infty}^{\infty} d\phi(x) \right] \mathcal{O}(\phi) e^{-S(\phi)}$

Positive integrand allows interpreting path integral weights as a probability measure:

 $\phi_i \sim p(\phi) = e^{-S(\phi)}/Z$ $\langle \mathcal{O} \rangle \approx \frac{1}{n} \sum_{i=1}^{n} \mathcal{O}(\phi_i)$

Measuring observables

Imaginary-time correlation functions inform us of the spectrum of the theory

$$\left\langle \mathscr{A}(t)\mathscr{A}^{\dagger}(0)\right\rangle = \sum_{n} Z_{n} e^{-E_{n}t} \xrightarrow{t \gg (\Delta E)^{-1}}$$
Ground so (e.g. partors designed to create/

annihilate state(s) of interest

Matrix elements, form factors, etc. accessible via additional operator insertions.

Nucleon correlator in lattice QCD

Detmold, INT-14-57W

Why ML for Lattice (Gauge) Theories?

State-of-the-art LGT calculations require enormous computational cost.

- $\gtrsim 10^9$ degrees of freedom
- "Critical slowing down" as $a \rightarrow 0$
- Costly matrix inversion for propagators $\langle \psi \bar{\psi} \rangle$ (especially as $m_q \rightarrow 0$)

These limit the precision of physics results (e.g. in lattice QCD accumulated uncertainties from $a \rightarrow 0, m_{\pi} \rightarrow \sim 140 \text{MeV}, \text{ and } V \rightarrow \infty \text{ limits!}$

Why ML for Lattice (Gauge) Theories?

Lattice field theories may be well-suited for application of ML

- Problem involving **lots** of well-structured data (lattice cfgs ~ images)
- Analytically-known Boltzmann distribution
- Flexibility to choose interpolating operators
- Flexibility to make model choices during analysis
- Ill-posed inverse problems

Stokes, Kamleh, Leinweber 1312.0991

Why ML for Lattice (Gauge) Theories?

Two major components to a lattice calculation. Might be interesting in applying ML to any/all of these.

1. Ensemble generation

Not real people!

See e.g. Boyda, et al. Snowmass 2022, 2202.05838

2. Observable measurements & analysis

Introduction to machine learning methods

What is machine learning?

Neural networks

+

Stochastic gradient descent Backpropagation

Large training datasets

+

+

Methods

. . .

Image classification

+

Language processing

+

Generative models

+

. . .

Applications

Artificial intelligence vs. machine learning

Pixar, WALL-E (2008) NVIDIA CEO Jen-Hsun Huang, "Visual Computing: The Road Ahead" (2015)

Artificial intelligence vs. machine learning

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08

Neural networks or: How I Learned to Stop Worrying and Love the Black Box

Parametrized linear transforms + elementwise non-linear functions

- → Universal function approximators K. Hornik, Neural Networks 4, 251–257 (1991)
- Matrices of weights W_1, W_2 are the (optimizable) model parameters ω
- Convolutional neural networks particularly useful on the lattice

Neural networks or: How I Learned to Stop Worrying and Love the Black Box

Parametrized linear transforms + elementwise non-linear functions

- → Universal function approximators K. Hornik, Neural Networks 4, 251–257 (1991)
- Matrices of weights W_1, W_2 are the (optimizable) model parameters ω
- Convolutional neural networks particularly useful on the lattice

We need to go deeper

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08

"Deep learning" = many layers

May be able to express more complex functions with fewer nodes per layer. *Could* be harder to train.

Lattice applications: Unclear whether lessons from standard ML apply. Try things!

https://www.ibm.com/cloud/learn/neural-networks

More general machine learning models

Composition of NNs with various **stochastic** or **deterministic** operations.

Generative models

. . .

- Reinforcement learning

Variational Autoencoder (VAE)

AlphaGo RL agent

Silver+ (DeepMind) Nature 529, 484-489 (2016) https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Optimizing the models

Supervised and unsupervised learning

- **Supervised:** "ground truth" training data available
 - Images with human-identified labels
 - "Go" game positions with heuristic strength values

Unsupervised: unlabeled training data

- Automatic clustering
- Self-training (GANs, RL self-play, ...)

https://www.quantamagazine.org/is-alphago-really-such-a-big-deal-20160329/

Loss functions

A measure $\mathscr{L}(\theta)$ of how **badly** the network is performing, as a function of model parameters θ .

- Aim to find $\operatorname{argmin}_{\theta} \mathscr{L}(\theta)$
- Choice of loss function depends on your objective! -

Classification

$$y_i \log(\hat{y}_i) + (1 - y_i)\log(1 - \hat{y}_i)$$

Generative

$$\log p(x_i) - \log \hat{p}(x_i)$$
, where $x_i \sim p$

$$\log \hat{p}(x_i) - \log p(x_i)$$
, where $x_i \sim \hat{p}$

 y_i and \hat{y}_i respectively true/model evaluations on *i*th training input

Generative case: we may learn a distribution defined either empirically OR analytically

Stochastic gradient descent

Gradient descent using stochastic gradient evaluations.

- Estimate true loss function by sampling "mini-batches"
- Aim to capture distribution properties, rather than population properties
- Good for generalization in standard ML

Machine learning applied to lattice gauge theory

Unique features of the lattice problem

Exactness, inverted data hierarchy, and symmetries

- Demand unbiased expectation values
- Have an inverted data hierarchy
- ✓ Know target probability density $e^{-S(\phi)}/Z$
- ✓ Know physical symmetries

likely

likely

unlikely

Lattice sampling

likely

unlikely

VS.

likely

Image generation

Data hierarchies

The lattice problem suffers from an "inverted data hierarchy".

 $\sim 10^9$ degrees of freedom $\sim 10^3$ samples

Karras, Lane, Aila / NVIDIA 1812.04948

$\sim 10^{6}$ degrees of freedom $\sim 10^{6} - 10^{8}$ samples

Image credit: Stefan Sint

Symmetries

- For ensemble generation, symmetries...
 - Constrain the form of the Boltzmann distribution
- For **observable measurements**, symmetries...
 - Determine classes of valid interpolating operators

- Symmetry-enhanced ML models are being developed.

"The biggest lesson that can be read from 70 years of AI research is that general methods that leverage computation are ultimately **the most effective**, and by a large margin." Rich Sutton (2019), "The Bitter Lesson"

Rawat & Wang Neur. Comp. 29 (2017) 2352 LeCun+ NeurIPS 2 (1989) Cohen & Welling 1602.07576 + many others Dieleman+ 1602.02660

- Success in lattice contexts may start interesting discussion on "Bitter lesson" theory

Classifying lattice phases

Regression task which can be addressed via standard neural networks

[van Nieuwenberg+ Nature Phys. 13 (2017) 435]

[Li+ 1703.02369]

[Wetzel+ PRB96 (2017) 184410]

[Zhou+ PRD100 (2019) 011501]

[Bachtis+ PRE102 (2020) 033303]

[Bluecher+ PRD101 (2020) 094507]

[Alexandrou+ EPJB (2020) 93 226]

[Tan+ 2103.10846]

[Boyda+ PRD103 (2021) 014509]

[Palermo+ PoS(LATTICE2021)030]

[Yau+ SciPost Phys. Core 5 (2022) 032]

+ many more

ML estimators for observables

Thermodynamic observables

Predicting observables from raw lattices

[Matsumoto+ 1909.06238]

Cross-observable estimates

[Alexandru+ PRD96 (2017) 094505] Learned contour deformations [Detmold, GK+ PRD102 (2020) 014514] + many more

Preconditioners for matrix inversion [Lehner and Wettig PRD108 (2023) 034503]

Spectral function reconstruction

Euclidean-time Green's functions \rightarrow spectral densities $\rho(\omega)$ (i.e. inverse Källén–Lehmann)

Neural-network parameterization of ρ

$$(\omega)$$

Action parameter regression

[Shanahan+ PRD97 (2018) 094506]

- Regression from configs to action
- Gauge-symmetry important to include in networks!

- Fully-connected network to predict (measured masses) → (action parameters)
- Speed-of-light tuning on anisotropic lattices [Hudspith and Mohler PRD106 (2022) 034508]

• Learned action approximating RG fixed point [Holland+ 2311.17816]

Ensemble generation

Finding improved Markov chain Monte Carlo updates

[Wang PRE96 (2017) 051301] [Huang and Wang PRB95 (2017) 035105] [Song+ NeurIPS (2017) 1706.07561] _____ [Tanaka and Tomiya 1712.03893] [Foreman+ ICLR (2021) 2105.03418] [Albandea+ 2302.08408]

"Self-learning Monte Carlo" [Liu+ PRB95 (2017) 241104] + many more

Directly sampling configurations

[Köhler+ 1910.00753] [Pawlowski and Urban MLST1 (2020) 045011] --[Carrasquilla+ Nature Mach. Int. 1 (2019) 155]

"Flow-based sampling"

[Albergo, GK, Shanahan PRD100 (2019) 034515] [Nicoli+ PRL126 (2021) 032001] [Gerdes+ 2207.00283] + many more

Review: Cranmer, GK+ Nat. Rev. Phys. 5 (2023) 526

(c) HMC

(b) GAN-overrelaxation

Case study: flow-based sampling

Massachusetts Hii Institute of Technology

The NSF Institute for Artificial Intelligence and Fundamental Interactions

Phiala Shanahan

Denis Boyda

Michael Albergo

Sébastien Racanière

Dan Hackett

Fernando **Romero-López**

Julian Urban

Ryan Abbott

Kyle Cranmer

Danilo Rezende Aleksander Botev

Alexander **Matthews**

Ali Razavi

A taste of flow-based sampling

Box-Muller transform (Marsaglia polar form)

$$x' = \frac{x}{r}\sqrt{-2\ln r^2}$$
 $y' = \frac{y}{r}\sqrt{-2\ln r^2}$

AKA a "normalizing flow"

Tabak & Vanden-Eijnden CMS8 (2010) 217 Tabak & Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

A taste of flow-based sampling

Box-Muller transform (Marsaglia polar form)

$$x' = \frac{x}{r}\sqrt{-2\ln r^2}$$
 $y' = \frac{y}{r}\sqrt{-2\ln r^2}$

AKA a "normalizing flow"

Tabak & Vanden-Eijnden CMS8 (2010) 217 Tabak & Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

Flow f0 $\mathbf{0}$ — (More complex) Output density: $q(x', y') = r(x, y) |\det J|^{-1}$

A taste of flow-based sampling

Box-Muller transform (Marsaglia polar form)

$$x' = \frac{x}{r}\sqrt{-2\ln r^2}$$
 $y' = \frac{y}{r}\sqrt{-2\ln r^2}$

(Simple) Prior density: r(x, y)

AKA a "normalizing flow"

Tabak & Vanden-Eijnden CMS8 (2010) 217 Tabak & Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

(More complex) Output density: $q(x', y') = r(x, y) |\det J|^{-1}$

Normalizing flows

General idea:

Tabak & Vanden-Eijnden CMS8 (2010) 217 Tabak & Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

Simple prior distribution $r(\xi)$

Desired model distribution $q(\phi)$

Normalizing flows

General idea:

Tabak & Vanden-Eijnden CMS8 (2010) 217 Tabak & Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

Simple prior distribution $r(\xi)$

With machine learning:

Each layer is a **diffeomorphism** with **tractable Jacobian**.

Desired model distribution $q(\phi)$

Dinh, Sohl-Dickstein, Bengio 1605.08803

Could mitigate critical slowing down by training models to directly sample configs at various lattice spacings

Albergo, GK, Shanahan PRD100 (2019) 034515

Self-training scheme

Albergo, GK, Shanahan PRD100 (2019) 034515

- 1. Define "Reverse" Kullback-Leibler (KL) divergence between $q(\phi)$ and $p(\phi) = e^{-S(\phi)}/Z$ $D_{\mathrm{KL}}(q \mid \mid p) := \int \mathscr{D}\phi \, q(\phi) \Big[\log q(\phi) \Big]$
- 2. Measure using samples ϕ_i from the model $D_{\mathrm{KL}}(q \mid \mid p) \approx \frac{1}{M} \sum_{i=1}^{M} \left[\log q(\phi_i) + S(\phi_i) \right]$
- 3. Minimize by stochastic gradient descent

Optimization must be designed for inverted data hierarchy in the lattice problem.

$$\left(1 - \log p(\phi)\right] \ge 0$$

Inspired by: - Self-Learning Monte Carlo (SLMC) [Huang, Wang PRB95 (2017) 035105; Liu, et al. PRB95 (2017) 041101; ...]

- Self-play reinforcement learning [Silver, et al. Science 362 (2018), 1140]

Image credit: DeepMind

Birds-eye view

"embarrassingly parallel"

Lattice gauge theory & Symmetries

Lattice gauge theory actions (typically) satisfy several symmetries:

- 1. (Discrete) translational symmetries
- 2. Hypercubic symmetries
- 3. Gauge symmetries

Symmetries **factor** distribution into uniform component along symmetry direction, and nonuniform component along invariant direction. Schematically:

q(U) q(U) q(U)

Exact symmetry

Learned symmetry

Symmetries in flows

Symmetries...

 \checkmark Reduce data complexity of training Reduce model parameter count May make "loss landscape" easier

Invariant prior + equivariant flow = symmetric model $r(t \cdot U) = r(U) \qquad \qquad f(t \cdot U) = t \cdot f(U)$

Motivation: Since target $p(\phi)$ is invariant under symmetries, natural to also make $q(\phi)$ invariant.

Cohen, Welling 1602.07576

Gauge symmetry

Distribution should be symmetric under for all gauge-group-valued fields $\Omega(x)$

Gauge-invariant prior:

Uniform (Haar) distribution r(U) = 1 works.

Gauge-equivariant flow:

Coupling layers act on (untraced) Wilson loops.

Loop transformation easier to satisfy.

er
$$(\Omega \cdot U)_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x + \hat{\mu})$$

).
Open loop
 $GK, Albergo, ... PRL125 (2020) 12160$
 $W_{\ell}(x) \xrightarrow{Flow} W'_{\ell}(x)$
 $W_{\ell}(x) \xrightarrow{Flow} W'_{\ell}(x)$
 $U_{\mu}(x)$
 $U'_{\mu}(x) = W'_{\ell}(x) V'_{\ell}(x)$

Gauge symmetry

for all gauge-group-valued fields $\Omega(x)$.

Gauge-invariant prior:

Uniform (Haar) distribution r(U) = 1 works.

Gauge-equivariant flow:

Coupling layers act on (untraced) Wilson loops.

Loop transformation easier to satisfy.

Distribution should be symmetric under $(\Omega \cdot U)_{\mu}(x) = \Omega(x)U_{\mu}(x)\Omega^{\dagger}(x+\hat{\mu})$

Custom flows designed for U(1) and SU(N)gauge manifolds

GK, Albergo, ... PRL125 (2020) 121601

Boyda, GK, ... PRD103 (2021) 074504 Rezende, ..., GK, ... PMLR119 (2020) 8083

Topological freezing solved for a U(1) gauge theory

Bare inverse coupling β

Cranmer, GK, Racanière, Rezende, Shanahan Nature Reviews Physics 5 (2023) 526

Recent developments

- Better training procedures
 - Minimize gradient noise with control variates or path gradients

Vaitl, Nicoli, Nakajima, Kessel (2022) 2207.08219

- "Residual flows"
 - Flow = Discrete steps according to gradient of scalar function $S(\phi)$
 - Symmetries easier to encode
 - Relation to trivializing map, continuous flows Lüscher CMP293 (2010) 899 Bacchio, Kessel, Schaefer, Vaitl PRD107 (2023) L051504

Abbott+ (2023) 2305.02402

Conclusions

Machine learning methods show promise

1. Ensemble generation

Early success with flow-based generative models

2. Defining observables

Order parameters, interpolating operators

3. Measuring observables

Improved estimators, learned contour deformations

Analysis

- Challenging inverse problems, e.g. spectral functions

Albergo, GK, Shanahan PRD100 (2019) 034515 Yoon+ PRD100 (2019) 014504

Some general lessons

Exactness can often be encoded in physical applications

- **1.** Analytical knowledge
- 2. Neural nets inside larger models

Specialized models often necessary

- Symmetries found to improve efficiency

GK, Albergo+ PRL125 (2020) 121601 Albergo, GK+ PRD104 (2021) 114507 Boyda, GK+ PRD103 (2021) 074504

Needed to handle structure of gauge manifold

"Transfer learning" can be very useful

- Begin training from a related model

Transfer between theories or tasks

Open questions

- Can we learn something intelligible from the trained models?
- Can generative approaches besides normalizing flows be made exact?
- Have we found a counter-example to the "Bitter lesson" or should we accept the conclusions of this theory?
- Can we exploit shared components of models between theories or applications? (Works very well for ChatGPT!)

Thank you!

Backup slides

Exactness

Samples from model are from biased distribution $q(U) \neq p(U)$, but...

For each U_i drawn from the model, we know $q(U_i)$ and $p(U_i)$

Flow-based models provide this.

Known in terms of the lattice action.

Note: Efficiency of bias correction depends on how close *q* and *p* are.

RealNVP for scalar fields

Scalar field $\phi(x) \in \mathbb{R} \approx \text{ grayscale image}$

Real NVP coupling layer:

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Checkerboard masking pattern m

Translational symmetry

1. Use Convolutional Neural Nets (CNNs).

- Output values (e.g. $e^{s(x)}$ and t(x)) for each site are local functions of frozen DoFs
- CNNs are equivariant under translations
- 2. Make masking pattern (mostly) invariant.
 - E.g. checkerboard

U(1) gauge theory in 1+1D

There is exact lattice topology in 2D.

$$Q = \frac{1}{2\pi} \sum_{x} \arg(P_{01}(x))$$

- Topological freezing towards continuum limit ($\beta \rightarrow \infty$)
- Compared flow vs analytical, HMC, and heat bath on 16×16 lattices for bare inverse coupling $\beta \in \{1, \dots, 7\}$
- One flow-based model trained for each β

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan PRL125 (2020) 121601]

