Machine Learning Methods

in

Lattice Gauge Theories

Stokes, Kamleh, Leinweber 1312.0991 WALL-E (2008) Pixar, please don't sue me

Gurtej Kanwar
Institute for Theoretical Physics, AEC, U. Bern

Lattices to regulate QFTs

- Electroweak effects and hard QCD processes can be treated perturbatively
- Low-energy QCD effects must be treated non-perturbatively
- Lattice field theory
- Euclidean path integral on a spacetime lattice
- Lattice spacing a cuts off UV divergences
- Numerically evaluate, then extrapolate $a \rightarrow 0$

Lattice QCD

- Hadronic spectrum
- Heavy resonances
- Hadronic structure
- PDFs and their generalizations
- Form factors
- New physics searches
- Muon g-2
- Heavy meson decays

Lattice field theory

Discretized path integral:

- Degrees of freedom assigned to points and edges of a lattice

Lattice scalar field configuration (2D slice)

- Boltzmann weight $e^{-S(\phi)}$ encodes distribution over "typical" configurations

Partition function

$$
Z \equiv\left[\prod_{x} \int_{-\infty}^{\infty} d \phi(x)\right] e^{-S(\phi)}
$$

Thermal expt. value of operator \mathcal{O}

$$
\langle\widehat{O}\rangle=\left[\prod_{x} \int_{-\infty}^{\infty} d \phi(x)\right] \widehat{O}(\phi) e^{-S(\phi)} / Z
$$

Monte Carlo simulation

$$
\langle\theta\rangle=\frac{1}{z}\left[\prod_{x}^{\infty} \int_{-\infty}^{\infty} d \phi(x)\right] \sigma(\phi) e^{-s(x)}
$$

Approximate the path integral using Markov chain Monte Carlo

$$
\phi_{i} \sim p(\phi)=e_{\langle\mathcal{O}\rangle}^{e^{-S(\phi)} / Z} \mathrm{n} \sum_{i=1}^{n} \mathcal{O}\left(\phi_{i}\right)
$$

Measuring observables

Imaginary-time correlation functions inform us of the spectrum of the theory

$$
\left\langle\mathscr{A}(t) \mathscr{A}^{\dagger}(0)\right\rangle=\sum_{n} Z_{n} e^{-E_{n} t} \quad \stackrel{t \gg(\Delta E)^{-1}}{\longrightarrow} Z_{0} e^{-E_{0} t}
$$

Matrix elements, form factors, etc. accessible

Nucleon correlator in lattice QCD via additional operator insertions.

Why ML for Lattice (Gauge) Theories?

State-of-the-art LGT calculations require enormous computational cost.

- $\gtrsim 10^{9}$ degrees of freedom
- "Critical slowing down" as $a \rightarrow 0$
- Costly matrix inversion for propagators $\langle\psi \bar{\psi}\rangle$ (especially as $m_{q} \rightarrow 0$)

These limit the precision of physics results (e.g. in lattice QCD accumulated uncertainties from $a \rightarrow 0, m_{\pi} \rightarrow \sim 140 \mathrm{MeV}$, and $V \rightarrow \infty$ limits!)

Why ML for Lattice (Gauge) Theories?

Lattice field theories may be well-suited for application of ML

- Problem involving lots of well-structured data (lattice cfgs ~ images)
- Analytically-known Boltzmann distribution
- Flexibility to choose interpolating operators
- Flexibility to make model choices during analysis
- III-posed inverse problems

Why ML for Lattice (Gauge) Theories?

Two major components to a lattice calculation.
Might be interesting in applying ML to any/all of these.

See e.g. Boyda, et al
Snowmass 2022, 2202.05838

1. Ensemble generation
few typical "configurations"

2. Observable measurements \& analysis

[github.com/timzhang642/3D-Machine-Learning]

Introduction to machine learning methods

What is machine learning?

Neural networks
$+$
Stochastic gradient descent
Backpropagation
$+$
Large training datasets

Image classification

$$
+
$$

Language processing $+$

Generative models
$+$

Methods

Artificial intelligence vs. machine learning

Artificial intelligence vs. machine learning

Neural networks or: How I Learned to Stop Worrying and Love the Black Box

Parametrized linear transforms + elementwise non-linear functions
\rightarrow Universal function approximators
K. Hornik, Neural Networks 4, 251-257 (1991)

- Matrices of weights W_{1}, W_{2} are the (optimizable) model parameters ω
- Convolutional neural networks particularly useful on the lattice

Input field variables

Linear:

Non-linear (elementwise):

utput derived variables

Neural networks or: How I Learned to Stop Worrying and Love the Black Box

Output derived variables

We need to go deeper

"Deep learning" = many layers

May be able to express more complex functions with fewer nodes per layer. Could be harder to train.

Lattice applications: Unclear whether lessons from standard ML apply. Try things!

More general machine learning models

Composition of NNs with various stochastic or deterministic operations.

- Generative models
- Reinforcement learning

Variational Autoencoder (VAE)

Optimizing the models

Supervised and unsupervised learning

Supervised: "ground truth" training data available

- Images with human-identified labels
- "Go" game positions with heuristic strength values

Unsupervised: unlabeled training data

- Automatic clustering
- Self-training (GANs, RL self-play, ...)

Loss functions

A measure $\mathscr{L}(\theta)$ of how badly the network is performing, as a function of model parameters θ.

- Aim to find $\operatorname{argmin}_{\theta} \mathscr{L}(\theta)$
- Choice of loss function depends on your objective!

$$
=-\frac{1}{n} \sum_{i=1}^{n} y_{i} \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right) .
$$

y_{i} and \hat{y}_{i} respectively true/model evaluations
on i th training input
Generative case: we may learn a distribution defined either empirically OR analytically

Stochastic gradient descent

Gradient descent using stochastic gradient evaluations.

- Estimate true loss function by sampling "mini-batches"
- Aim to capture distribution properties, rather than population properties
- Good for generalization in standard ML

Machine learning applied to lattice gauge theory

Unique features of the lattice problem

Exactness, inverted data hierarchy, and symmetries
4. Demand unbiased expectation values
4. Have an inverted data hierarchy
\checkmark Know target probability density $e^{-S(\phi)} / Z$
\checkmark Know physical symmetries

Data hierarchies

The lattice problem suffers from an "inverted data hierarchy".

$\sim 10^{9}$ degrees of freedom
$\sim 10^{3}$ samples

Karras, Lane, Aila / NVIDIA 1812.04948

$\sim 10^{6}$ degrees of freedom
$\sim 10^{6}-10^{8}$ samples

Symmetries

For ensemble generation, symmetries...

- Constrain the form of the Boltzmann distribution

For observable measurements, symmetries...

- Determine classes of valid interpolating operators

Rawat \& Wang Neur. Comp. 29 (2017) 2352 LeCun+ NeurIPS 2 (1989)
Symmetry-enhanced ML models are being developed.

Cohen \& Welling 1602.07576
Dieleman+ 1602.02660

- Success in lattice contexts may start interesting discussion on "Bitter lesson" theory
"The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the most effective, and by a large margin." Rich Sutton (2019), "The Bitter Lesson"

Classifying lattice phases

Regression task which can be addressed via standard neural networks

ML estimators for observables

Thermodynamic observables
[Nicoli+ PRL126 (2021) 032001]

Predicting observables from raw lattices

[Matsumoto+ 1909.06238]
[Bulusu+ PRD104 (2021) 074504]

[Favoni+ PRL128 (2022) 032003]
[Yoon+ PRD100 (2019) 014504]
Cross-observable estimates
[Zhang+ PRD101 (2020) 034516]

Learned contour deformations
[Alexandru+ PRD96 (2017) 094505]
[Detmold, GK+ PRD102 (2020) 014514]

+ many more
Preconditioners for matrix inversion
[Lehner and Wettig PRD108 (2023) 034503]

Spectral function reconstruction

Euclidean-time Green's functions \rightarrow spectral densities $\rho(\omega)$
(i.e. inverse Källén-Lehmann)

Neural-network parameterization of $\rho(\omega)$

Action parameter regression

[Shanahan+ PRD97 (2018) 094506]

- Regression from configs to action
- Gauge-symmetry important to include in networks!
- Fully-connected network to predict (measured masses) \rightarrow (action parameters)
- Speed-of-light tuning on anisotropic lattices
[Hudspith and Mohler PRD106 (2022) 034508]

- Learned action approximating RG fixed point [Holland+ 2311.17816]

Ensemble generation

Finding improved Markov chain Monte Carlo updates

[Wang PRE96 (2017) 051301]
[Huang and Wang PRB95 (2017) 035105]
[Song+ NeurlPS (2017) 1706.07561]

(c) HMC

(d) A-NICE-MC

Directly sampling configurations

[Köhler+ 1910.00753]
[Pawlowski and Urban MLST1 (2020) 045011]
[Carrasquilla+ Nature Mach. Int. 1 (2019) 155]

"Flow-based sampling"

[Albergo, GK, Shanahan PRD100 (2019) 034515] [Nicoli+ PRL126 (2021) 032001]
[Gerdes+ 2207.00283] + many more

(a)

HMC

(b)

Review: Cranmer, GK+ Nat. Rev. Phys. 5 (2023) 526

Case study: flow-based sampling

A taste of flow-based sampling

Box-Muller transform (Marsaglia polar form)

$$
x^{\prime}=\frac{x}{r} \sqrt{-2 \ln r^{2}} \quad y^{\prime}=\frac{y}{r} \sqrt{-2 \ln r^{2}}
$$

A taste of flow-based sampling

Box-Muller transform (Marsaglia polar form)

AKA a "normalizing flow"
Tabak \& Vanden-Eijnden CMS8 (2010) 217 Tabak \& Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

$$
x^{\prime}=\frac{x}{r} \sqrt{-2 \ln r^{2}} \quad y^{\prime}=\frac{y}{r} \sqrt{-2 \ln r^{2}}
$$

(Simple) Prior density:
$r(x, y)$

(More complex) Output density:

$$
q\left(x^{\prime}, y^{\prime}\right)=r(x, y)|\operatorname{det} J|^{-1}
$$

A taste of flow-based sampling

Box-Muller transform (Marsaglia polar form)

$$
x^{\prime}=\frac{x}{r} \sqrt{-2 \ln r^{2}} \quad y^{\prime}=\frac{y}{r} \sqrt{-2 \ln r^{2}}
$$

(More complex) Output density: $q\left(x^{\prime}, y^{\prime}\right)=r(x, y)|\operatorname{det} J|^{-1}$

Normalizing flows

General idea:

Tabak \& Vanden-Eijnden CMS8 (2010) 217 Tabak \& Turner CPA66 (2013) 145 Lüscher CMP293 (2010) 899

Normalizing flows

General idea:

Tabak \& Vanden-Eijnden CMS8 (2010) 217
Tabak \& Turner CPA66 (2013) 145
Lüscher CMP293 (2010) 899

$$
\begin{gathered}
\text { Simple prior } \\
\text { distribution } r(\xi)
\end{gathered} \longrightarrow \begin{gathered}
\text { Desired model } \\
\text { distribution } q(\phi)
\end{gathered}
$$

With machine learning:

"RealNVP"

coupling layer g_{i}
Dinh, Sohl-Dickstein, Bengio 1605.08803

Could mitigate critical slowing down by training models to directly sample configs at various lattice spacings

Self-training scheme

Optimization must be designed for inverted data hierarchy in the lattice problem.
Albergo, GK, Shanahan PRD100 (2019) 034515
Inspired by:

1. Define "Reverse" Kullback-Leibler (KL) divergence between $q(\phi)$ and $p(\phi)=e^{-S(\phi)} / Z$

$$
D_{\mathrm{KL}}(q \| p):=\int \mathscr{D} \phi q(\phi)[\log q(\phi)-\log p(\phi)] \geq 0
$$

2. Measure using samples ϕ_{i} from the model

$$
D_{\mathrm{KL}}(q \| p) \approx \frac{1}{M} \sum_{i=1}^{M}\left[\log q\left(\phi_{i}\right)+S\left(\phi_{i}\right)\right]
$$

3. Minimize by stochastic gradient descent

- Self-Learning Monte Carlo (SLMC) [Huang, Wang PRB95 (2017) 035105; Liu, et al. PRB95 (2017) 041101; ...]
-Self-play reinforcement learning
[Silver, et al. Science 362 (2018), 1140]

Birds-eye view

Lattice gauge theory \& Symmetries

Lattice gauge theory actions (typically) satisfy several symmetries:

1. (Discrete) translational symmetries
2. Hypercubic symmetries
3. Gauge symmetries

Symmetries factor distribution into uniform component along symmetry direction, and nonuniform component along invariant direction.

Schematically:

Exact symmetry

Learned symmetry

Symmetries in flows

Motivation: Since target $p(\phi)$ is invariant under symmetries, natural to also make $q(\phi)$ invariant.

Symmetries...
\checkmark Reduce data complexity of training
\checkmark Reduce model parameter count
\checkmark May make "loss landscape" easier

Exact symmetry

Learned symmetry

Invariant prior + equivariant flow = symmetric model
$r(t \cdot U)=r(U) \quad f(t \cdot U)=t \cdot f(U)$

Gauge symmetry

Distribution should be symmetric under $(\Omega \cdot U)_{\mu}(x)=\Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\hat{\mu})$ for all gauge-group-valued fields $\Omega(x)$.

Gauge-invariant prior:

Uniform (Haar) distribution

$$
r(U)=1 \text { works. }
$$

Gauge-equivariant flow:

Coupling layers act on (untraced) Wilson loops.

Loop transformation easier to satisfy.

Gauge symmetry

Distribution should be symmetric under $(\Omega \cdot U)_{\mu}(x)=\Omega(x) U_{\mu}(x) \Omega^{\dagger}(x+\hat{\mu})$ for all gauge-group-valued fields $\Omega(x)$.

Gauge-invariant prior:

Custom flows designed
for $U(1)$ and $S U(N)$
gauge manifolds

Uniform (Haar) distribution

$$
r(U)=1 \text { works. }
$$

Gauge-equivariant flow:

Coupling layers act on (untraced) Wilson loops.

Loop transformation easier to satisfy.

Topological freezing solved for a $\mathbf{U}(1)$ gauge theory

Recent developments

- Better training procedures
- Minimize gradient noise with control variates or path gradients
Vaitl, Nicoli, Nakajima, Kessel (2022) 2207.08219
- "Residual flows"
- Flow = Discrete steps according to gradient of scalar function $\hat{S}(\phi)$

Abbott+ (2023) 2305.02402

- Symmetries easier to encode
- Relation to trivializing map, continuous flows

Conclusions

Machine learning methods show promise

1. Ensemble generation

- Early success with flow-based generative models

2. Defining observables

- Order parameters, interpolating operators

3. Measuring observables

- Improved estimators, learned contour deformations

4. Analysis

- Challenging inverse problems, e.g. spectral functions

Flow f

Some general lessons

Exactness can often be encoded in physical applications

1. Analytical knowledge
2. Neural nets inside larger models

Specialized models often necessary

- Symmetries found to improve efficiency
- Needed to handle structure of gauge manifold

```
Albergo, GK+ PRD104 (2021) 114507
Boyda, GK+ PRD103 (2021) 074504
```

"Transfer learning" can be very useful

- Begin training from a related model
- Transfer between theories or tasks

Exact symmetry

Learned symmetry

Open questions

- Can we learn something intelligible from the trained models?
- Can generative approaches besides normalizing flows be made exact?
- Have we found a counter-example to the "Bitter lesson" or should we accept the conclusions of this theory?
- Can we exploit shared components of models between theories or applications? (Works very well for ChatGPT!)

Thank you!

Backup slides

Exactness

Samples from model are from biased distribution $q(U) \neq p(U)$, but...

For each U_{i} drawn from the model, we know $\underset{\text { Fow-based models }}{q\left(U_{i}\right)}$ and $\underset{\text { Knownintems of }}{p\left(U_{i}\right)}$ provide this. the lattice action.

Exact bias correction possible
(e.g. "flow-based MCMC" or reweighting)

$$
\langle\mathcal{O}\rangle_{p}=\frac{\langle\mathcal{O}(U) p(U) / q(U)\rangle_{q}}{\langle p(U) / q(U)\rangle_{q}}
$$

Note: Efficiency of bias correction
depends on how close q and p are.

RealNVP for scalar fields

Scalar field $\phi(x) \in \mathbb{R} \approx$ grayscale image

$$
\begin{gathered}
\text { Tractable Jacobian } \\
J_{i j} \equiv \partial \phi_{i}^{\prime} / \partial \phi_{j}=\left[\begin{array}{ll}
I \\
\square & \delta_{i j} e^{s_{i}}
\end{array}\right] \\
\Longrightarrow \ln \operatorname{det} J=\sum_{i} s_{i}
\end{gathered}
$$

Real NVP coupling layer:
[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Translational symmetry

1. Use Convolutional Neural Nets (CNNs).

- Output values (e.g. $e^{s(x)}$ and $\left.t(x)\right)$ for each site are local functions of frozen DoFs
- CNNs are equivariant under translations

2. Make masking pattern (mostly) invariant.

- E.g. checkerboard

U(1) gauge theory in 1+1D

There is exact lattice topology in 2D.

$$
Q=\frac{1}{2 \pi} \sum_{x} \arg \left(P_{01}(x)\right) \bigodot_{-2} \bigodot_{-1} \bigodot_{0}
$$

$$
\begin{aligned}
S(U) & =-\beta \sum_{x} \sum_{\mu<\nu} \operatorname{Re} P_{\mu \nu}(x) \\
P_{\mu \nu}(x) & =U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)
\end{aligned}
$$

- Topological freezing towards continuum limit $(\beta \rightarrow \infty)$
- Compared flow vs analytical, HMC, and heat bath on 16×16 lattices for bare inverse coupling $\beta \in\{1, \ldots, 7\}$
- One flow-based model trained for each β

