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Lattices to regulate QFTs

https://evanberkowitz.com/2018/05/30/gA.html

• Electroweak effects and hard QCD processes 
can be treated perturbatively 

• Low-energy QCD effects must be treated 
non-perturbatively 

• Lattice field theory 

- Euclidean path integral on a spacetime lattice


- Lattice spacing  cuts off UV divergences


- Numerically evaluate, then extrapolate 

a

a → 0



QCD contributions
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Lattice QCD
• Hadronic spectrum


- Heavy resonances


• Hadronic structure


- PDFs and their generalizations


- Form factors


• New physics searches


- Muon g-2


- Heavy meson decays


• …

Fodor & Hoelbling RMP84 (2012) 449

Constantinou+   2006.08636

Muon g-2 Press release (2023)
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Lattice field theory

⟨𝒪⟩ = [∏
x

∫
∞

−∞
dϕ(x)] 𝒪(ϕ) e−S(ϕ)/ZThermal expt. value 

of operator 𝒪

Z ≡ [∏
x

∫
∞

−∞
dϕ(x)] e−S(ϕ)Partition function

x x + µ̂Uµ(x) µ

∫

a

x μ
ν

Lattice scalar field configuration (2D slice)

Lattice gauge field configuration (2D slice)

ϕ(x)

 
for QCD
∈ SU(3)

 
Discretized path integral:


- Degrees of freedom assigned to points 
and edges of a lattice


- Boltzmann weight  encodes 
distribution over “typical” configurations

e−S(ϕ)



⟨𝒪⟩ =
1
Z [∏

x
∫

∞

−∞
dϕ(x)] 𝒪(ϕ) e−S(ϕ)
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Monte Carlo simulation

Leinweber, "Visualizations of Quantum Chromodynamics", 2004

⟨𝒪⟩ ≈
1
n

n

∑
i=1

𝒪(ϕi)

ϕi ∼ p(ϕ) = e−S(ϕ)/Z

Positive integrand allows interpreting path 
integral weights as a probability measure:

Approximate the path integral using Markov chain Monte Carlo



6

Measuring observables
Imaginary-time correlation functions inform us of the spectrum of the theory

Detmold, INT-14-57W

Nucleon correlator in lattice QCD

⟨𝒜(t)𝒜†(0)⟩ = ∑
n

Zne−Ent ⟶ Z0 e−E0t
t ≫ (ΔE)−1

Operators designed to create/
annihilate state(s) of interest

Ground state energy 
(e.g. particle mass)

Matrix elements, form factors, etc. accessible 
via additional operator insertions.



7

Why ML for Lattice (Gauge) Theories?

M
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Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Topological QCD 
observable

Lattice spacing  [fm]a

Eichhorn, et al. (2023) 2307.04742

Continuum

 
State-of-the-art LGT calculations require 
enormous computational cost.


-  degrees of freedom


- “Critical slowing down” as 


- Costly matrix inversion for propagators  
(especially as )


These limit the precision of physics results  
(e.g. in lattice QCD accumulated uncertainties from 

, , and  limits!)

≳ 109

a → 0

⟨ψψ̄⟩
mq → 0

a → 0 mπ → ∼ 140MeV V → ∞
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Why ML for Lattice (Gauge) Theories?

Stokes, Kamleh, Leinweber 1312.0991

Lattice field theories may be well-suited for 
application of ML


- Problem involving lots of well-structured data 
(lattice cfgs ~ images)


- Analytically-known Boltzmann distribution


- Flexibility to choose interpolating operators


- Flexibility to make model choices during 
analysis


- Ill-posed inverse problems
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Why ML for Lattice (Gauge) Theories?
Two major components to a lattice calculation. 
Might be interesting in applying ML to any/all of these. 

1. Ensemble generation

[github.com/timzhang642/3D-Machine-Learning]

See e.g. Boyda, et al. 
Snowmass 2022, 2202.05838

few typical 
“configurations”

many atypical 
“configurations”

[Karras, Lane, Aila / NVIDIA 1812.04948]

Not real people!

2. Observable measurements & analysis



Introduction to 
machine learning methods
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What is machine learning?
Image classification


+


Language processing 


+


Generative models


+


…

Methods Applications

Neural networks


+


Stochastic gradient descent 
Backpropagation


+


Large training datasets


+


…
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Artificial intelligence vs. machine learning

NVIDIA CEO Jen-Hsun Huang, “Visual Computing: The Road Ahead” (2015)
Pixar, WALL-E (2008)
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Artificial intelligence vs. machine learning

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08



Neural networks or: How I Learned to 
Stop Worrying and Love the Black Box

Parametrized linear transforms +  
elementwise non-linear functions

→ Universal function approximators  

- Matrices of weights  are the 
(optimizable) model parameters 


- Convolutional neural networks 
particularly useful on the lattice

W1, W2
ω

W1 x W2 h1

h1 = f1(W1x) h2 = f2(W2h1) …

Linear: 

Non-linear 
(elementwise):

…

K. Hornik, Neural Networks 4, 251–257 (1991)

Input field 
variables

Output derived 
variables



Neural networks or: How I Learned to 
Stop Worrying and Love the Black Box

Parametrized linear transforms +  
elementwise non-linear functions

→ Universal function approximators  

- Matrices of weights  are the 
(optimizable) model parameters 


- Convolutional neural networks 
particularly useful on the lattice

W1, W2
ω

W1 x W2 h1

h1 = f1(W1x) h2 = f2(W2h1) …

Linear: 

Non-linear 
(elementwise):

…

K. Hornik, Neural Networks 4, 251–257 (1991)

Free parameters ω

Input field 
variables

Output derived 
variables
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We need to go deeper

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
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“Deep learning” = many layers
 
 
 
 
 
 
 
 
 
 
May be able to express more complex functions with fewer nodes per layer.


Could be harder to train. 
 
Lattice applications: Unclear whether lessons from standard ML apply. Try things!

https://www.ibm.com/cloud/learn/neural-networks
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More general machine learning models
Composition of NNs with various stochastic or deterministic operations.


- Generative models


- Reinforcement learning


- …

Variational Autoencoder (VAE)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

AlphaGo RL agent

Silver+ (DeepMind) Nature 529, 484–489 (2016)
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Optimizing the models

Define a “loss function” ℒ

Minimize  via stochastic 
gradient descent

ℒ

Store/distributed optimized 
model parameters
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Supervised and unsupervised learning
 
Supervised: “ground truth” training data available


- Images with human-identified labels


- “Go” game positions with heuristic strength values 
 
 

Unsupervised: unlabeled training data


- Automatic clustering


- Self-training (GANs, RL self-play, …)

https://www.quantamagazine.org/is-alphago-really-such-a-big-deal-20160329/
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Loss functions
A measure  of how badly the network is performing, as a function of 
model parameters .


- Aim to find 


- Choice of loss function depends on your objective!

ℒ(θ)
θ

argminθ ℒ(θ)

ℒMSE =
1
n

n

∑
i=1

(yi − ̂yi)2

ℒMAE =
1
n

n

∑
i=1

|yi − ̂yi |

ℒCross−entropy = −
1
n

n

∑
i=1

yi log( ̂yi) + (1 − yi)log(1 − ̂yi)

ClassificationRegression

ℒKLfwd =
1
n

n

∑
i=1

log p(xi) − log ̂p(xi), where xi ∼ p

Generative
…

…

 and  respectively 
true/model evaluations 

on th training input

yi ̂yi

i

Generative case: we 
may learn a distribution 

defined either empirically 
OR analyticallyℒKLbwd =

1
n

n

∑
i=1

log ̂p(xi) − log p(xi), where xi ∼ ̂p



21

Stochastic gradient descent

Image credit: 1805.04829

 
 
Gradient descent using stochastic 
gradient evaluations. 

- Estimate true loss function by sampling 
“mini-batches” 


- Aim to capture distribution properties, 
rather than population properties


- Good for generalization in standard ML



Machine learning applied to 
lattice gauge theory
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Unique features of the lattice problem
Exactness, inverted data hierarchy, and symmetries  
 

⚠ Demand unbiased expectation values 

⚠ Have an inverted data hierarchy


✓ Know target probability density 


✓ Know physical symmetries

e−S(ϕ)/Z

likely

likely

unlikely

likely

likely

unlikely

Lattice sampling Image generationvs.
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Data hierarchies
The lattice problem suffers from an “inverted data hierarchy”.

 degrees of freedom 
 samples

∼ 109

∼ 103

Karras, Lane, Aila / NVIDIA 1812.04948

 degrees of freedom 
 samples

∼ 106

∼ 106 − 108

Image credit: Stefan Sint
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Symmetries
For ensemble generation, symmetries…


- Constrain the form of the Boltzmann distribution


For observable measurements, symmetries…


- Determine classes of valid interpolating operators 
 

Symmetry-enhanced ML models are being developed.


- Success in lattice contexts may start interesting discussion on “Bitter lesson” theory
“The biggest lesson that can be read from 70 years of AI research is that general methods that leverage 
computation are ultimately the most effective, and by a large margin.”

q(¡)

Exact symmetry

q(¡)

Learned symmetry

Invariant

Pure-symmetry

Rawat & Wang  Neur. Comp. 29 (2017) 2352

LeCun+  NeurIPS 2 (1989)

Cohen & Welling  1602.07576

Dieleman+  1602.02660

+ many others

Rich Sutton (2019), “The Bitter Lesson”



26

Classifying lattice phases
Regression task which can be addressed via standard neural networks 

[van Nieuwenberg+  Nature Phys. 13 (2017) 435]


[Li+  1703.02369]


[Wetzel+  PRB96 (2017) 184410]


[Zhou+  PRD100 (2019) 011501]


[Bachtis+  PRE102 (2020) 033303]


[Bluecher+  PRD101 (2020) 094507]


[Alexandrou+ EPJB (2020) 93 226]


[Tan+  2103.10846]


[Boyda+  PRD103 (2021) 014509]


[Palermo+  PoS(LATTICE2021)030]


[Yau+  SciPost Phys. Core 5 (2022) 032]


+ many more

SU(2) gauge theory deconfinement transition

Scalar field theory transition 
with chemical potential
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ML estimators for observables
Thermodynamic observables 

Predicting observables from raw lattices


 
 
 

Cross-observable estimates


Learned contour deformations


Preconditioners for matrix inversion

[Nicoli+ PRL126 (2021) 032001]

[Matsumoto+  1909.06238]

[Bulusu+  PRD104 (2021) 074504]

[Favoni+  PRL128 (2022) 032003]

[Yoon+ PRD100 (2019) 014504]

[Zhang+ PRD101 (2020) 034516]

[Lehner and Wettig PRD108 (2023) 034503]

[Alexandru+  PRD96 (2017) 094505]

[Detmold, GK+  PRD102 (2020) 014514]

+ many more
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Spectral function reconstruction
Euclidean-time Green’s functions  spectral densities  
(i.e. inverse Källén–Lehmann)


Neural-network parameterization of 

→ ρ(ω)

ρ(ω)

[Kades+  PRD102 (2020) 096001]
[Horak+  PRD105 (2022) 036014][Chen+  2110.13521]

[Wang+  PRD106 (2022) L051502]
[Shi+  CPC282 (2023) 108547]

[Offler+  1912.12900]



• Learned action approximating RG fixed point

• Fully-connected network to predict 
(measured masses) → (action parameters)


• Speed-of-light tuning on anisotropic lattices
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Action parameter regression

[Shanahan+  PRD97 (2018) 094506]

• Regression from configs to action


• Gauge-symmetry important to include in networks!

[Holland+ 2311.17816]

[Hudspith and Mohler PRD106 (2022) 034508]
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Ensemble generation
Finding improved Markov chain Monte Carlo updates 
 
 
 
 
 
 

Directly sampling configurations

[Wang  PRE96 (2017) 051301]

[Huang and Wang  PRB95 (2017) 035105]

[Song+  NeurIPS (2017) 1706.07561]

[Tanaka and Tomiya  1712.03893]

[Foreman+  ICLR (2021) 2105.03418]

[Albandea+  2302.08408]

[Liu+ PRB95 (2017) 241104] + many more
“Self-learning Monte Carlo”

[Köhler+ 1910.00753]

[Pawlowski and Urban  MLST1 (2020) 045011]

[Carrasquilla+ Nature Mach. Int. 1 (2019) 155]

HMC GAN-overrelaxation

[Albergo, GK, Shanahan  PRD100 (2019) 034515]

[Nicoli+ PRL126 (2021) 032001]

[Gerdes+  2207.00283] + many more
Review: Cranmer, GK+ Nat. Rev. Phys. 5 (2023) 526

“Flow-based sampling”



Case study: 
flow-based sampling
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Michael Albergo

Danilo RezendeSébastien 
Racanière

Aleksander Botev Ali Razavi

Phiala Shanahan Dan Hackett Fernando 
Romero-López

Denis Boyda Ryan AbbottJulian Urban

Kyle Cranmer

Alexander 
Matthews
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A taste of flow-based sampling AKA a “normalizing flow”

Box-Muller transform (Marsaglia polar form)

        x′￼ =
x
r

−2 ln r2 y′￼ =
y
r

−2 ln r2

Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

Lüscher CMP293 (2010) 899
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A taste of flow-based sampling AKA a “normalizing flow”

Flow  f

(More complex) Output density:

q(x′￼, y′￼) = r(x, y) | det J |−1

(Simple) Prior density:

r(x, y)

Box-Muller transform (Marsaglia polar form)

        x′￼ =
x
r

−2 ln r2 y′￼ =
y
r

−2 ln r2

Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

Lüscher CMP293 (2010) 899
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A taste of flow-based sampling AKA a “normalizing flow”

Flow  f

(More complex) Output density:

q(x′￼, y′￼) = r(x, y) | det J |−1

(Simple) Prior density:

r(x, y)

libstdc++
<random>

Box-Muller transform (Marsaglia polar form)

        x′￼ =
x
r

−2 ln r2 y′￼ =
y
r

−2 ln r2

Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

Lüscher CMP293 (2010) 899



General idea:
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Normalizing flows

Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

Lüscher CMP293 (2010) 899

Simple prior 
distribution r(ξ)

Desired model 
distribution q(ϕ)

°1

0

1
°1

0

1

°1

0

1
°1

0

1

Flow f



General idea:


34

Normalizing flows

Tabak & Vanden-Eijnden CMS8 (2010) 217

Tabak & Turner CPA66 (2013) 145

Lüscher CMP293 (2010) 899

Each layer is a diffeomorphism with tractable Jacobian.

Flow  f
“RealNVP” 

coupling layer gi

Dinh, Sohl-Dickstein, Bengio 1605.08803

With machine learning:

Could mitigate critical slowing down by 
training models to directly sample 
configs at various lattice spacings
Albergo, GK, Shanahan PRD100 (2019) 034515

Simple prior 
distribution r(ξ)

Desired model 
distribution q(ϕ)

°1

0

1
°1

0

1

°1

0

1
°1

0

1

Flow f
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Self-training scheme
Optimization must be designed for inverted data hierarchy in the lattice problem. 

1. Define “Reverse” Kullback-Leibler (KL) divergence 
between  and  
 
 

2. Measure using samples  from the model 
 
 

3. Minimize by stochastic gradient descent

q(ϕ) p(ϕ) = e−S(ϕ)/Z

ϕi

DKL(q | |p) := ∫ 𝒟ϕ q(ϕ)[log q(ϕ) − log p(ϕ)] ≥ 0

Inspired by:

- Self-Learning Monte Carlo (SLMC) 

[Huang, Wang PRB95 (2017) 035105;

Liu, et al. PRB95 (2017) 041101; …] 
 
- Self-play reinforcement learning 
[Silver, et al. Science 362 (2018), 1140]

DKL(q | |p) ≈
1
M

M

∑
i=1

[log q(ϕi) + S(ϕi)]

Image credit: DeepMind

Albergo, GK, Shanahan PRD100 (2019) 034515
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Birds-eye view
Parameterize flow using 
coupling layers with NNs

Training step

Draw samples from model

Compute loss function

Gradient descent

Draw samples and 
apply bias correction

Desired accuracy?

Save trained model

generating samples is 
"embarrassingly parallel"

Flow  f

random 
noise

~ typical 
gauge field
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Lattice gauge theory & Symmetries

Symmetries factor distribution into uniform 
component along symmetry direction, and non-

uniform component along invariant direction. 
Schematically:

q(U)

Exact symmetry

q(U)

Learned symmetry

Invariant

Pure-symmetry

 
 
 
Lattice gauge theory actions (typically) 
satisfy several symmetries:


1. (Discrete) translational symmetries


2. Hypercubic symmetries


3. Gauge symmetries
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Symmetries in flows

Symmetries…


✓Reduce data complexity of training


✓Reduce model parameter count


✓May make “loss landscape” easier

q(¡)

Exact symmetry

q(¡)

Learned symmetry

Invariant

Pure-symmetry

Cohen, Welling 1602.07576

Motivation: Since target  is invariant under 
symmetries, natural to also make  invariant.

p(ϕ)
q(ϕ)

r(t ⋅ U) = r(U) f(t ⋅ U) = t ⋅ f(U)

Invariant prior + equivariant flow = symmetric model
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Gauge symmetry
Distribution should be symmetric under   
for all gauge-group-valued fields  .

(Ω ⋅ U)μ(x) = Ω(x)Uμ(x)Ω†(x + ̂μ)
Ω(x)

Gauge-invariant prior: 

Uniform (Haar) distribution 
 works.
r(U) = 1

Gauge-equivariant flow: 

Coupling layers act on 
(untraced) Wilson loops.


Loop transformation 
easier to satisfy.

V`(x)

`

Uµ(x)

x

µ

∫

`

W`(x) ! ≠(x)W`(x)≠†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

∫

Closed loop

Wℓ(x) Flow W′￼ℓ(x)

U′￼μ(x) = W′￼ℓ(x) V†
ℓ(x)

GK, Albergo, … PRL125 (2020) 121601
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Gauge symmetry
Distribution should be symmetric under   
for all gauge-group-valued fields  .

(Ω ⋅ U)μ(x) = Ω(x)Uμ(x)Ω†(x + ̂μ)
Ω(x)

Gauge-invariant prior: 

Uniform (Haar) distribution 
 works.
r(U) = 1

Gauge-equivariant flow: 

Coupling layers act on 
(untraced) Wilson loops.


Loop transformation 
easier to satisfy.

GK, Albergo, … PRL125 (2020) 121601

°º 0 º

¡1

°º

0

º

¡2

SU(2)

¡1

°º

0

º¡2

°º

0

º

¡3

°º

0

º

SU(3)

Custom flows designed 
for  and  

gauge manifolds
U(1) SU(N) Boyda, GK, … PRD103 (2021) 074504


Rezende, …, GK, … PMLR119 (2020) 8083
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Topological freezing solved for a U(1) gauge theory

Cranmer, GK, Racanière, Rezende, Shanahan 
Nature Reviews Physics 5 (2023) 526

4 orders of 
magnitudeM

ea
su

re
 o

f C
os

t

Bare inverse coupling β

Continuum

Traditional method 1 (HMC)

Traditional method 2 (Heatbath)
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Recent developments
• Better training procedures


- Minimize gradient noise with control variates 
or path gradients 
 

• “Residual flows”


- Flow = Discrete steps according to gradient 
of scalar function 


- Symmetries easier to encode


- Relation to trivializing map, continuous flows

̂S(ϕ)

Vaitl, Nicoli, Nakajima, Kessel  (2022) 2207.08219

M
od

el
 q

ua
lit

y 
(E

SS
)

Lüscher  CMP293 (2010) 899

Bacchio, Kessel, Schaefer, Vaitl  PRD107 (2023) L051504

Abbott+ (2023) 2305.02402



Conclusions
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Machine learning methods show promise
1. Ensemble generation 

- Early success with flow-based generative models 

2. Defining observables 

- Order parameters, interpolating operators


3. Measuring observables 

- Improved estimators, learned contour deformations


4. Analysis 

- Challenging inverse problems, e.g. spectral functions

Flow  f

Yoon+ PRD100 (2019) 014504
Albergo, GK, Shanahan PRD100 (2019) 034515



44

Some general lessons
Exactness can often be encoded in physical applications


1. Analytical knowledge


2. Neural nets inside larger models 

Specialized models often necessary


- Symmetries found to improve efficiency 
 
 

- Needed to handle structure of gauge manifold

GK, Albergo+  PRL125 (2020) 121601

Albergo, GK+  PRD104 (2021) 114507

Boyda, GK+  PRD103 (2021) 074504

q(¡)

Exact symmetry

q(¡)

Learned symmetry

Invariant

Pure-symmetry

“Transfer learning” can be very useful


- Begin training from a related model


- Transfer between theories or tasks
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Open questions

‣ Can we learn something intelligible from the trained models?


‣ Can generative approaches besides normalizing flows be made exact?


‣ Have we found a counter-example to the “Bitter lesson” or 
should we accept the conclusions of this theory?


‣ Can we exploit shared components of models between theories or 
applications? (Works very well for ChatGPT!)



Thank you!



Backup slides
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Exactness
Samples from model are from biased distribution , but…q(U) ≠ p(U)

For each  drawn from the 
model, we know  and 

Ui
q(Ui) p(Ui)

Exact bias correction possible 
(e.g. “flow-based MCMC” or reweighting)

Note: Efficiency of bias correction 
depends on how close  and  are.q p

Flow-based models 
provide this.

Known in terms of 
the lattice action.

⟨𝒪⟩p =
⟨𝒪(U) p(U)/q(U)⟩q

⟨p(U)/q(U)⟩q
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RealNVP for scalar fields
Scalar field     grayscale image 

Real NVP coupling layer:

ϕ(x) ∈ ℝ ≈

[Dinh, Sohl-Dickstein, Bengio 1605.08803]

Elementwise affine transformation 
is manifestly invertible

Freeze B

Update A

Checkerboard masking pattern m

Free parameters ω

Tractable Jacobian



Jij ≡ ∂ϕ′￼i /∂ϕj = [ I
◼ δijesi]

⟹ ln det J = ∑
i

si
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Translational symmetry

CNN

Translation of input…

… equals translation of output

Convolutional 
network with 

free parameters 
ω

1. Use Convolutional Neural Nets (CNNs). 

- Output values (e.g.  and ) for each site are local 
functions of frozen DoFs


- CNNs are equivariant under translations 

2. Make masking pattern (mostly) invariant.


- E.g. checkerboard

es(x) t(x)
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U(1) gauge theory in 1+1D
There is exact lattice topology in 2D.


 
 
 

- Topological freezing towards continuum 
limit ( )


- Compared flow vs analytical, HMC, 
and heat bath on  lattices for 
bare inverse coupling 


- One flow-based model trained for each 

β → ∞

16 × 16
β ∈ {1,…,7}

β

Q =
1

2π ∑
x

arg(P01(x))

5 6 7

Ø

0.6

0.8

1.0

1.2

1.4
¬Q/Exact

HMC HB Flow

Topological susceptibility χQ = ⟨Q2/V⟩

[GK, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan  PRL125 (2020) 121601]

S(U) = − β∑
x

∑
μ<ν

Re Pμν(x)

Pμν(x) = Uμ(x)Uν(x + ̂μ)U†
μ(x + ̂ν)U†

ν (x)

x x + µ̂Uµ(x) µ

∫

a

Continuum


