

13th December 2023

Flavour Physics at the start of a new era

OUTATIME

Part I: Experiment Outlook (other than LHCb)

- Kaons
- Charm
- Beauty

FCC-ee

>2045

Flavour Physics

https://science.osti.gov/hep/About/Vision-for-HEP

• Directly produce new particles and observe from their decays.

"Quantum Imprints"

New particles in quantum loops

Intensity

• Precision measurements and compare with theory

With thanks to Cristina Lazzeroni for info. on following slides

Kaon Physics

Small number of kaon decay modes Simple final states Ease of producing intense kaon beams Can probe unprecedented mass scales

Kaons - NA62 at CERN. Detector

- K decay volume hence 300m long !
- Kaons: KTAG Cherenkov kaon tagger, GTK silicon tracker
- Decay products Straw tracker, RICH, Calorimeters

Kaons - NA62 at CERN. Physics Results & Aims

Ultra-rare Kaon Decays $K \rightarrow \pi v \bar{v}$

JHEP 06 (2021) 093

A high-order process with highest CKM suppression:

A ~ $(m_t/m_w)^2 |V_{ts}^*V_{td}| ~ \lambda^5$

Extremely rare decays, rates very precisely predicted in SM "Free" from hadronic uncertainties. Exceptional SM precision

BR($K^+ \rightarrow \pi^+ vv$) = (11.0 ^{+4.0}_{-3.5 stat} ± 0.3_{syst})×10⁻¹¹ 3.5 σ significance from first results

HIKE – Future Kaon Physics Programme at CERN

- arXiv:2211.16586 CERN approving an upgrade to an SPS beamline (ECN3) – ~5 times intensity
 - One of the proposals for use of this is HIKE

- Models with CKM-like flavor structure –Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - -Z/Z' models with pure LH/RH couplings
 - Littlest Higgs with
 T parity
- Models without above constraints
 - -Randall-Sundrum

Phase 1:

B($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) to O(5%) precision Phase 2:

First observation of the $K_L \rightarrow \pi^0 l^+ l^-$

Phase 3: KLEVER (nothing-to-nothing!)

 $B(K_L \rightarrow \pi^0 vv)$ to O(20%) precision

Also JPARC KOTO Experiment (Phys. Rev. Lett. 126, 121801) for $K_L \rightarrow \pi^0 vv$

No decision yet

SHADOWS

Search for Hidden And Dark Objects With the SPS

Charm dedicated facilities – BESIII at IHEP, Beijing

arXiv:1912.05983

• LHCb dominates charm statistics and with boost -but **BESIII** has unique properties

D⁰ Strong Phase Difference in γ/ϕ_3

Quantum entangled threshold charm mesons at threshold:

- Tag one meson in a CP eigenstate
- Sensitivity to strong phases, CP fraction in other meson decay.
- Vital input to γ measurement and charm mixing studies at LHCb & Belle II.

Hadron Spectroscopy and Exotic Hadrons

Nature of exotic hadrons much debated:

- Different production mechanism
- Low backgrounds

Charm dedicated facilities – Super Charm-Tau in China?

E_{cm}=2-7GeV, L=0.5×10³⁵ cm⁻² s⁻¹

With thanks to Yangheng Zheng, Charm 2023

- Proposed new facility arXiv:2303.15790
- Build on BESII success, two orders of magnitude higher luminosity
- Apply to Chinese government for construction funding in 2026-2030

Beauty dedicated facilities – threshold e⁺e⁻ or p-p

- Clean environment
 - no additional tracks
- Initial state
 - $B^0 B^0$ or $B^+ B^-$
- B mesons ~ 20% σ_{tot}
 - simpler triggering

- Huge production rates
 - $pp fb^{-1} \sim e^+e^- ab^{-1}$
- All Beauty hadrons species
 - $-B^0,B^+,B_s,B_c,\Lambda_b$
- Large boost factor
 - Time resolution

Beauty dedicated facilities – Belle II Detector

Belle II detector

- Asymmetric beam energy e⁺e⁻ at Y(4S)
 - B Bbar with boost
- Aim to collect 50ab⁻¹ by mid-2030s
- Luminosity has been below expectations
 Current sample 0.4 ab⁻¹ (cf. Belle 0.7 ab⁻¹)

Beauty dedicated facilities – Belle II Results & Prospects

- Detector performance demonstrated
 - And full pixel detector installed in current shutdown
- Initial results with some world bests

Combined result

- Evidence @ 3.6σ
- Tension with SM (0.6×10⁻⁵) @ 2.8σ

 $\rightarrow \mu\mu\mu$ [10⁻

		C C	
bservables	Expected the. accu-	Expected	—
	racy	exp. uncertainty	_
T angles & sides			
1 [°]	***	0.4	
2 [°]	**	1.0	Broad programme
3	***	1.0	
cb incl.	***	1%	Belle II at 50 ab ⁻¹
Z_{cb} excl.	**	1.3%	
u_{b} mcl.	**	2%	highly competitive
P Violation		270	
$(B \to \phi K^0)$	***	0.02	with LHCb Upgrade I
$(B \rightarrow \eta' K^0)$	***	0.01	
$(B \to K^0 \pi^0) [10^{-2}]$	***	4	at 50fb ⁻¹
$(B \to K^+ \pi^-) \ [10^{-2}]$	***	0.20	
Semi-)leptonic			
$B(B \to \tau \nu) \ [10^{-6}]$	**	3%	Notably
$\mathcal{E}(B \to \mu \nu) \ [10^{-6}]$	**	7%	Notably.
$\mathcal{L}(B o D au u)$	***	3%	
$\mathcal{C}(B \to D^* \tau \nu)$	***	2%	
adiative & EW Penguins	**	407	States difficult
$(B \to X_s \gamma)$ $(D \to V \to 10^{-2})$	**	4%	
$CP(B \to X_{s,d}\gamma) [10^{-1}]$	***	0.005	at LHCb
$(B \to K_S \pi^* \gamma)$	**	0.03	
$(B \rightarrow \rho \gamma)$ [10 ⁻⁶]	**	0.3	(e.g. neutrals)
$(B_s \rightarrow F_r)$ [10] $(B \rightarrow K^* \nu \overline{\nu})$ [10 ⁻⁶]	***	15%	(
$\mathcal{L}(B \to K^*\ell\ell)$	***	0.03	
harm			_
$D(D_s \to \mu \nu)$	***	0.9%	 Similar projections
$(D_s \to \tau \nu)$	***	2%	
$CP(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	**	0.03	on v and
$p/p (D^0 \to K_S^{\tilde{0}}\pi^+\pi^-)$	***	0.03	
$_{CP}(D^+ \to \pi^+ \pi^0) \ [10^{-2}]$	**	0.17	_semi-lentonics
au			
$\rightarrow \mu \gamma \ [10^{-10}]$	***	< 50	
$\rightarrow e\gamma [10^{-10}]$	***	< 100	

< 3

arXiv:1808.10567

Part II: LHCb Trilogy

- Recent Physics Highlights
- LHCb Upgrade I Status
- LHCb Upgrade II
 Opportunities

Chris Parkes

With its challenges....

LHCb Upgrade

- 5 major new detector systems to install
- New electronics for all 7 major systems
- New software-only trigger system

Most major CERN detector project since start of LHC

With its challenges....

Started in covid lockdown of 2020:

• Daily crisis meetings

Personal tragedies of collaborators

Throughout two years:

 Logistics of construction, transport & installation of new experiment across 20 countries

With its challenges....

Intriguing pattern of "B anomalies" over past decade (and g-2 muon) - attempts to create a coherent theoretical picture

March 2021 LHCb result (R_{κ}) at 3.1 σ from SM

December 2022 LHCb results (R_K, R_{K*}, 4 bins q²) compatible with SM

With its challenges....

LHCb Collaboration

- Four institutes in Ukraine
 - Three damaged by Russian bombs
 - Members sheltering in underground stations, family members killed
 - Males under 65 unable to leave country
 - Major responsibilities for luminometer and radiation monitoring system
- Eleven institutes in Russia (10% collaboration)
 - Many colleagues openly against the war
 - Difficult decisions whether to return to family or move / stay outside Russia
 - Major responsibilities for calorimeters and muon systems
- Paper publication suspended for 1 year to reach author list agreement
 - Results continued to be released on arXiv

January 2023

- Malfunction of LHC vacuum safety system
- Primary LHC vacuum and vertex detector modules separated by thin foil
- 200mbar pressure differential across 250µm of aluminum
 - 400kg, thickness of a few sheets of paper

With its challenges....

1100 authors, 98 institutes, 22 countries

700 submitted papers

2009 : we didn't know what we were doing but I still had hair

Celebrating "LHCb-original"!

LHCb was originally designed for CP violation and b & c-hadron rare decays...

... but it achieved much more: exotic spectroscopy, heavy ions, fixed target programme, EW precision physics, dark sector searches...

Today recent results on

CP violation in B decays and D⁰ mixing, Lepton Flavour Universality, Spectroscopy, breadth of programme

KHC Sin(2 β) – full LHCb data

- obtained by the "golden mode" $B^0 \to J/\psi K^0$

CP violation in interference between decay and mixing $P(B \rightarrow f_{CP}) = P(B \rightarrow B \rightarrow f_{CP})$

- Original mode of Babar/Belle discovery 2001
 - Confirming SM interpretation of CP violation, Nobel Prize 2008
 - Factor 2 better than prev. world best (Belle), compatible result

First evidence Charm CP Violation in specific decay ICHEP '22

- Upper end of SM prediction – separate into individual symmetries
 - Control channels to _{0.} correct asymmetries
 - 3.8σ asymmetry evidence in KK

LHCb-PAPER-2022-024

- Direct CP Discovery 2019
- ΔA_{CP} difference KK, $\pi\pi$
- Cancel systematics
 - Production, detection asymmetries

27

B anomalies: R(K) & R(K*)

- "B anomalies" several results in tension with standard model (SM)
- Included lepton flavour universality ratios in rare b→sll processes
- 2021 LHCb paper reported 3.1σ from SM in one q² bin in R_K generating much interest

$$R_H \equiv \frac{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to H\mu^+\mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{\min}^2}^{q_{\max}^2} \frac{\mathrm{d}\mathcal{B}(B \to He^+e^-)}{\mathrm{d}q^2} \mathrm{d}q^2} \,.$$

- Coherent measurement of four values $(R_K, R_{K^*} \text{ each in two } q^2 \text{ bins})$ with full Run1+2 data sample for all
 - new treatment of hadronic misidentified background to electrons
 - All results in good agreement with SM

LHCb-PAPER-2022-045/046

December '2

 R_K low- q^2 R_K central- q^2 R_{K^*} low- q^2 R_{K^*} central- q^2

B anomalies: R(D) & R(D*)

LHCb-PAPER-2023-052

LHCb-PAPER-2022-039

- "B anomalies" several results in tension with standard model (SM)
- Including lepton flavour universality ratios in semi-leptonic b \rightarrow clv processes
- Undetected v considered difficult at LHC, previously results dominated by Belle/Babar
- LHCb results with muonic and hadronic decay of tau $\mathcal{R}(D^*) \equiv \mathcal{B}(\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\overline{B} \to D^* \mu^- \overline{\nu}_{\mu})$ $\hat{\mathcal{R}}(D^0) = \mathcal{B}(B^- \to D^0 \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(B^- \to D^0 \mu^- \overline{\overline{\nu}}_{\mu})$
 - LHCb results compatible with SM and with previous results
 - world average remains 3σ from SM

La Thuile '23

Red band – LHCb hadronic tau result Blue elipse – LHCb muonic result, October '22

- LHCb now major contributor in this area
- Future results with full Run1&2 will give significant improvement in precision

B anomalies: R(D) & R(D*)

LHCb-PAPER-2023-052

LHCb-PAPER-2022-039

- "B anomalies" several results in tension with standard model (SM)
- Including lepton flavour universality ratios in semi-leptonic b \rightarrow clv processes
- Undetected v considered difficult at LHC, previously results dominated by Belle/Babar
- LHCb results with muonic and hadronic decay of tau $\mathcal{R}(D^*) \equiv \mathcal{B}(\overline{B} \to D^* \tau^- \overline{\nu}_{\tau}) / \mathcal{B}(\overline{B} \to D^* \mu^- \overline{\nu}_{\mu})$ $\hat{\mathcal{R}}(D^0) = \mathcal{B}(B^- \to D^0 \overline{\tau}^- \overline{\nu}_{\tau}) / \mathcal{B}(B^- \to D^0 \mu^- \overline{\overline{\nu}}_{\mu})$
 - LHCb results compatible with SM and with previous results
 - world average remains 3σ from SM
- LHCb now major contributor in this area
- Future results with full Run1&2 will give significant improvement in precision

Hot topic – lots of activity !

La Thuile '23

Hadrons

- More than 70 particles discovered at LHC
- 64 at LHCb

• Doubly Charming Tetraquark Discovery: T_{cc}^+ in $D^0 D^0 \pi^+$

consistent with $cc\overline{u}\overline{d}$

Very narrow state, slightly below $D^{*+}D^{0}$ threshold $\delta m_{BW} = -273 \pm 61 \pm 5^{+11}_{-14} \text{keV}/c^{2}$,

EPS '21

$\Gamma_{\rm BW} ~=~$	$410 \pm 165 \pm 43 {}^{+18}_{-38}\mathrm{keV},$
-----------------------	--

Increased interest for T_{bc}, T_{bb} as possible first long-lived, weakly decaying, states! Need Upgrade statistics

Breadth of LHCb Physics: Electroweak

- LHCb results in Precision Electroweak
- W mass hot topic with '22 CDF result
- Pathfinder LHCb result with 2016 data only

Science

HEAVYWEIGHT

 LHCb results combined with ATLAS reduce sensitivity to the parton distribution functions. PDFs.

EPS '21

JHEP 01 (2022) 36

- In LHCb W bosons are produced in collisions of high- with low-x partons
- ATLAS mainly collisions of mid-x partons produce the W bosons observed

Breadth of LHCb: Understanding Dark Matter in Space

- Astrophysics tells us that dark matter exists
- Space based experiments try to detect it by measuring anti-protons
 - need to know how many anti-protons to expect from standard physics
 - protons collide with He in space and can produce anti-protons
- LHCb has unique programme measuring protons with gas

- Ratio of *detached* to *prompt* anti-protons
- Predictions
 have underestimated this ratio

QM '22

LHCb Upgrades

- Physics programme limited by detector, NOT by LHC
- Hence, clear case for an ambitious plan of upgrades

Upgrade I started now! • Lpeak = 2x10³³ cm⁻² s⁻¹ • Lint = 50 fb⁻¹ during Run 3 & 4 • Healthy competition with Belle II if reach 50 ab⁻¹

Upgrade II

 $\cdot L_{peak} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- $L_{int} = ~300 \text{ fb}^{-1} \text{ during Run 5 \& 6, Install in LS4 (2033)}$
- Some smaller detector consolidation and enhancements in LS3 (2026)
- Potentially the only general purpose flavour physics facility in world on this timescale

LHCb Upgrade I

Does the sequel live up to the original ?

The next step

снср 1st Dedicated LHCb Collaboration Workshop on High Luminosity Upgrade 11th / 12th January 2007, National E-Science Institute, Edinburgh **External speakers include:** Y. Nir, P. Ball, M. Mangano, C. Sachrajda, F. Zimmermann Web site: http://www.nesc.ac.uk/esi/events/729 Secretariat: lee@nesc.ac.uk Local Organisers: Chris Parkes, Franz Muheim Attendance from potential new collaborators is welcome UNIVERSITY of GLASGOW IPPP, Durham SUPA Scottish Universi Physics Allian

	EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)	
	LHCb-DP-2022-002 May 17, 2023	JS.//
May 2023	The LHCb Upgrade I	arxiv.o
arXiv:2305.10515v1 [hep-ex] 17 N	LHCb collaboration [†] Description Description The almost completely research and provide and instantaneous huminosity from main algory than that of the previous running periods. Readout of all detectors in the algory than that of the previous running periods. Readout of all detectors in all detectors in the algory and the algory algory and the algory algorithm and algory algory and algory algorithm algory algorithm algory algorithm algory algorithm algorithm algorithm algorithm algorithm algorithm algorithm periods algorithm algorithm algorithm algorithm algorithm algorithm algorithm the RIGH detectors algorithm algorithm algorithm algorithm algorithm algorithm periods as combination of totally reconstructed physics objects, such as tracks and periods and for the angolyment algorithm algorithm algorithm algorithm algorithm periods and algorithm algorithm algorithm algorithm algorithm algorithm algorithm periods and algorithm algorithm algorithm algorithm algorithm algorithm periods and algorithm algorithm algorithm algorithm algorithm algorithm periods and algorithm al	าบู/สมร/2งบว
	submitted to J. Instr. © 2023 CERN for the bracks of the LHCb collaboration. <u>CC BY 4.0 herec</u> . ¹ Asthers are lated at the end of this paper.	

35

Accepted by JINST

All sub-detectors read out at 40 MHz for a fully software trigger

• Target $L_{peak} = 2x10^{33} \text{ cm}^{-2} \text{ s}^{-1}$, pile-up ~5

- Pixel detector VELO with silicon microchannel cooling 5mm from LHC beam
- New RICH mechanics, optics and photodetectors
- New silicon strip upstream tracker UT detector
- New SciFi tracker with 11,000 km of scintillating fibres
- New electronics for muon and calorimeter systems

Major project installed for operation in Run 3

LHCb Upgrade I: Trigger Revolution CERN-LHCC-2014-016 CERN-LHCC-2020-006

- All sub-detectors read out at 40 MHz for a fully software trigger
- Factor of ~ 10 increase expected in hadronic yields at Run 3

- 30 MHz of inelastic collisions will be reduced to ~1MHz by the HLT1 (tracking/vertexing and muon ID) running on GPUs
 - ~ 400 cards
- Highest throughput of any HEP experiment
 - Up to 4 TB/s data rate through Event Builder network.
 - O(4%) of internet traffic in 2022

- Online Align and Calib means...
- Optimal quality reconstruction online in trigger
 - No need for re-reconstruction
 - No need to keep raw data
- Benefits:
 - Expansion of physics programme
 - Large reduction in computing resources (raw data 200kB, triggered objects 15kB)
- Risks:
 - Reprocessing notpossible in case of errors

e.g. VELO alignment performed online in 7mins in Run2

LHCh

CERN-LHCC-2018-014

CERN-LHCC-2018-007

lacksquare

Selective persistence Only signal decay tracks.... those in cone around... those from same PV.... All tracks in event.... All ECAL clusters....

LHCb Upgrade I: VELO

- Hybrid Pixel Detectors (55µm pitch)
- Close to the LHC beam (5.1 mm)
 - retracted/reinserted each fill
- Innovative silicon microchannel substrate
 - Bi-phase CO₂ cooling
- DAQ capable of handling 40TB/s
- **Installation completed May 2022**

CERN-LHCC-2013-021

LHC Vacuum Volume Incident in VELO

RF Foil, 150-250µm thick, separates primary and secondary vacuum volumes

- On 10th January 2023 incident occurred due to a failure of the LHC vacuum system at the VELO.
- Detector modules & cooling are not damaged
- The system was returned to a safe situation
- RF foil has undergone plastic deformation
- Replacement in current shutdown would have significantly affected overall LHC programme
- Replace in the shutdown now at the end of 2023
 - schedule: 13 weeks + contingency 3 weeks
- LHCb physics programme in '23 affected as VELO could not be fully closed but opportunities remain

VELO RF Foil Replacement

Replacement work is proceeding on schedule

Most critical tasks of foil and half removal are successfully completed

LHCb Upgrade I: RICH 1 & 2

CERN-LHCC-2013-022

- Unique particle identification system, key for success of physics programme
- RICH1&2: new photodetector MaPMTs with Increased granularity and 40MHz readout
- RICH1: new design with new optical system with increased focal length, to halve occupancy
- Installation successfully completed Feb. '22

RICH1: MaPMTs installation

RICH2: first rings, LHC October '21 test

LHCb Upgrade I: Upstream Tracker

- 68 staves with silicon strips and integrated cooling, arranged in 4 planes
 - -fast pT determination for track extrapolation
 - → reduce ghost track, and improve trigger bandwidth
 - -long-lived particles decaying after VELO (K_S, Λ)
- Installation successfully completed March '23, now commissioning,

CERN-LHCC-2014-001

CERN-LHCC-2014-001

- Large scale tracking stations after magnet
- Scintillating Fibres
 - -250µm diameter, 2.5m long
- Signal readout by SiPMs
 - Operate at -40 C
- 12 layers of mats
- 6 layers of fibres in each mat
 - 12,000 km of fibre !
- Installation completed March '22

LHCb Upgrades

- Physics programme limited by detector, NOT by LHC
- Hence, clear case for an ambitious plan of upgrades

- $\cdot L_{peak} = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- $L_{int} = 50 \text{ fb}^{-1} \text{ during}$ Run 3 & 4
- Healthy competition
 with Belle II at 50 ab⁻¹

Upgrade II

 $\cdot L_{peak} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- $L_{int} = -300 \ fb^{-1} \ during \ Run \ 5 \ \& \ 6, \ Install \ in \ LS4 \ (2033)$
- Some smaller detector consolidation and enhancements in LS3 (2026)

 $[10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}]$

Inst. luminosity

· Potentially the only general purpose flavour physics facility in world on this timescale

Upgrade II

Critics Consensus

Back to the Future Part III draws the trilogy to a satisfying close

Powered by time travel !

Upgrade II: steps so far

CERN

Expression of Interest

Physics case

Opportunities in flavour physics, and beyond, in the HL-LHC era

LHCC-2017-003

LHCC-2018-027

Accelerator study

CERN-ACC-NOTE-2018-0038

2018-08-29 Ilias.Efthymiopoulos@cern.ch

LHCb Upgrades and operation at 10¹⁴ cm² s⁴ luminosity -A first study

G. Arduini, V. Baglin, H. Burkhardt, F. Cerutti, S. Claudet, B. Di Girolamo, R. De Maria, I. Efthymiopoulos, L.S. Esposito, N. Karastathis, R. Lindner, L.E. Medina Medrano, Y. Papaphilippou, C.Parkes, D. Pellegrini, S. Redaelli, S. Roesler, F. Sanchez-Galan, P. Schwarz, E. Thomas, A. Tsinganis D. Wollmann, G. Wilkinson CERN, Geneva, Switzerland

CERN-ACC-2018-038

Keywords: LHC, HL-LHC, HiLumi LHC, LHCb, https://indico.cern.ch/event/400665

Framework

LHCb

LHCC-2021-012

CERN Research Board September 2019

"The recommendation to prepare a framework TDR for the LHCb Upgrade-II was endorsed, noting that LHCb is expected to run throughout the HL-LHC era."

European Strategy Update 2020 "The full potential of the LHC and the HL-LHC, including the study of flavour physics, should be exploited"

US P5 2023: "LHCb upgrade II will be a major project that opens a new era of precision"

Approved March 2022 R&D programme followed by sub-system TDRs

UK Research and Innovation

49

Constraining the Unitarity Triangle

- Current data show no significant deviations from the SM on $\Delta F=2$ observables and many other flavour-changing processes
- Either NP is very heavy of it has a highly non trivial structure
 LHCb Upgrade II will test the CKM paradigm with unprecedented accuracy

Arguably the greatest likelihood of a further paradigm shifting discovery at the HL-LHC lies with flavour physics

Beauty and Charm CPV Examples

CP violating phase φ_s

- Sensitive to new physics small and well predicted in SM
- Upgrade II sensitivity below SM prediction in multiple channels

CP violation in charm

 LHCb Upgrade II is the only planned facility with a realistic possibility to observe CPV in charm mixing (at >5 \sigma if present central values are assumed)

Broad programme – Ions, Fixed Target, EW, Dark Sector...

The detector challenge

Targeting same performance as in Run 3, but with pile-up ~40!

Same spectrometer footprint, innovative technology for detector and data processing Key ingredients:

- granularity
- fast timing (few tens of ps)
- radiation hardness

Environmental impact discussed for the first time in a TDR

4D Vertexing: Precision Timing

JINST

90

15 (2020) P09029

Tracker: Rad Hard MAPs, first of kind at LHC

- UT before magnet
- Mighty tracker SciFi+CMOS after magnet
- Monolithic Active Pixel Sensors $(50 \times 150 \mu m^2)$
 - Radiation requirements in UT $3 \times 10^{15} n_{eq}/cm^2$
 - low-cost commercial process, low material budget
- Scintillating fibres in outer region
 - radiation-hard fibres, cryogenic cooling, micro-lens enhanced SiPMs

MightyPix1 1/4 scale chip fabricated

54

- LHCb physics
 - > 650 papers so far, many more to come from Run 2 analysis $-\text{New:} \sin(2\beta), \varphi_s$
- LHCb Upgrade I
 - Largest CERN particle physics project since LHC completion
 - Despite pandemic completed onbudget and in time for Run 3
- LHCb Upgrade II

-project taking shape: Framework TDR approved, R&D setting path

Summary

• LHCb physics

LHCb preliminary

 $B^0 \rightarrow \psi (\rightarrow \ell \ell) K^0_c (\rightarrow \pi^+ \pi^-)$

LHCb

Original

2009-2018

- come from Run 2 analysis -New: $sin(2\beta)$, ϕ_s
- LHCb Upgrade I
 - -Largest CERN particle physics project since LHC completion
 - Despite pandemic completed onbudget and in time for Run 3
- LHCb Upgrade II

-project taking shape: Framework TDR approved, R&D setting path

Upgrade I

2022-2032

LHCD

H

Upgrade II

2033-

LHCb

I H (

Backup

LHC Schedule

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning/magnet training LS4 extended to allow LHCb Upgrade II installation

Magnet Stations: expanding physics potential

- Low momentum particles swept out by magnet
- Instrument walls of magnet with scintillating bars
- Obtain sub-% momentum measurement
- Significant increase of acceptance for low momentum

e.g. factor of ~2 gain in prompt D^{*+} with slow π

Flavour @ FCC-ee (or CEPC – very similar machine)

~100km CERN e⁺e⁻ machine for >2045

From Guy Wilkinson, Jernej Kamenik FCC week 2023

Running mode includes ~ 5x10¹² Z decays, hence flavour

Attribute	$\Upsilon(4S)$	pp	Z^0
All hadron species		1	~
High boost		1	1
Enormous production cross-section		1	
Negligible trigger losses	1		1
Low backgrounds	1		1
Initial energy constraint	1		(•)

Effort underway to explore potential

potential

LHCb Upgrade I: CALO & Muon

CERN-LHCC-2013-022

- New Electronics readout
- Existing detectors able to stand increased luminosity of Run3
 - Inner ECAL upgrade for LS3

Shashlik Calorimeters

- PMT gains reduced
- New front-end electronics
 with improved S/N and 40MHz readout

Muon stations

- 4 walls equipped with MWPCs, and interleaved with iron filters
- 40Mz readout electronics

Occupancy Muon station 2

LHCb Upgrade I: PLUME & SMOG

CERN-LHCC-2021-002 CERN-LHCC-2019-005

- Systems at the entrance of the VELO are ready to operate
- PLUME luminometer
 - quartz tablets + PMTs
 - online+offline per-bunch luminosity measurement
 - in Global data taking
- SMOG2 gas target
 - New storage cell for the gas upstream of the nominal IP
 - Gas density increased by up to two orders of magnitude → much higher luminosity
 - Gas targets: $He, Ne, Ar + possibly H_2, D_2, N_2, Kr, Xe$
 - Installed & tested
 - Simultaneous p-p and p-gas data taking possible!

Physics Case: performance table

Upgrade I will not saturate precision in many key observables

 \Rightarrow Upgrade II will fully realise the flavour-physics potential of the HL-LHC

Key observables in flavour physics					LHC	<u>.C-20</u>
Rey ubservables in navour physics					upo	dated
			\rightarrow			
Observable	Current I	LHCb	$_{ m Upgr}$	ade I	Upgrade II	
	(up to 9)	(b^{-1})	$(23{ m fb}^{-1})$	$(50{ m fb}^{-1})$	$(300{\rm fb}^{-1})$	
<u>CKM tests</u>						
$\gamma~(B ightarrow DK,~etc.)$	4°	[9, 10]	1.5°	1°	0.35°	
$\phi_s \; ig(B^0_s o J\!/\!\psi\phiig)$	$32\mathrm{mrad}$	[8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$	
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6% [29, 30]	3%	2%	1%	
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	$36 imes 10^{-4}$	[34]	$8 imes 10^{-4}$	$5 imes 10^{-4}$	$2 imes 10^{-4}$	
$a^s_{ m sl}~(B^0_s ightarrow D^s\mu^+ u_\mu)$	$33 imes 10^{-4}$	[35]	$10 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$	
Charm						
$\Delta A_{CP} \ (D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)$	$29 imes 10^{-5}$	[5]	13×10^{-5}	$8 imes 10^{-5}$	$3.3 imes 10^{-5}$	
$A_{\Gamma} \left(D^0 ightarrow K^+ K^-, \pi^+ \pi^- ight)$	11×10^{-5}	[38]	5×10^{-5}	$3.2 imes 10^{-5}$	$1.2 imes 10^{-5}$	
$\Delta x \left(D^0 ightarrow K^0_{ m s} \pi^+ \pi^- ight)$	18×10^{-5}	[37]	$6.3 imes 10^{-5}$	4.1×10^{-5}	$1.6 imes 10^{-5}$	
Rare Decays						
$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 69% [-	40, 41]	41%	27%	11%	
$S_{\mu\mu}~(B^0_s ightarrow\mu^+\mu^-)$	_				0.2	
$A_{ m T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016	
$A_{\mathrm{T}}^{\mathrm{Im}} \left(B^0 ightarrow K^{*0} e^+ e^- ight)$	0.10	[52]	0.060	0.043	0.016	
$\mathcal{A}_{\phi\gamma}^{\tilde{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083	0.033	
$S_{\phi\gamma}^{\phi\gamma}(B^0_s o \phi\gamma)$	0.32	[51]	0.093	0.062	0.025	
$lpha_\gamma(\Lambda^0_b o \Lambda\gamma)$	$^{+0.17}_{-0.29}$	[53]	0.148	0.097	0.038	
Lepton Universality Tests	0120					
$R_K \ (B^+ o K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007	
$R_{K^*} \ (B^0 o K^{*0} \ell^+ \ell^-)$	0.12	[61]	0.034	0.022	0.009	
$R(D^*)$ $(B^0 ightarrow D^{*-} \ell^+ u_\ell)$	0.026 [62, 64]	0.007	0.005	0.002	

- Full range of beauty & charm mesons & baryons accessible
 - Strong results with π^0 , photons, missing particles reconstruction
 - Beyond Flavour: LHCb as general purpose detector in forward region
 - Spectrocopy, EW precision, dark sector and exotic searches, heavy ions and fixed target physics

5D Calorimetry: Precision timing

- Goal: achieve energy resolution and reconstruction eff. ~ to Run1&2
 - pile-up, radiation up to 1MGy
- Requires: granularity, precision timing
- Different technologies in different regions
- Crystal fibres R&D for highest fluence regions
- Extensive R&D

Real Time Analysis - Computing Resources

CERN-LHCC-2018-014 CERN-LHCC-2018-007

- Real time analysis already extensively used in Run 2
- >70% of events in Upgrade I will use real time analysis

- Efficient use of computing resources
- Focus on bandwidth not event rate
- Minimise expensive disk resource

