Light Higgs boson searches at the Tevatron

Harald Fox Department of Physics <u>h.fox@lancaster.ac.uk</u>

Contents

Two General Purpose Detectors: CDFDØElectron acceptance $|\eta| < 2.0 |\eta| < 3.0$ Muon acceptance $|\eta| < 1.5 |\eta| < 2.0$ Silicon Precision tracking $|\eta| < 2.0 |\eta| < 3.0$ Hermetic Calorimeter $|\eta| < 3.6 |\eta| < 4.2$

Powerful trigger systems (2.5MHz \rightarrow 50Hz) Dilepton triggers with p_T>4GeV

Total inelastic cross section.

Total inelastic cross section.

Light quarks are ubiquitous.

Total inelastic cross section.

Light quarks are ubiquitous.

Plenty of W and Z bosons \rightarrow calibration.

Evidence of single top production is an important milestone towards the Higgs boson.

Total inelastic cross section.

Light quarks are ubiquitous.

Plenty of W and Z bosons \rightarrow calibration.

Evidence of single top production is an important milestone towards the Higgs boson.

The Higgs cross section is 10-11 orders of magnitudes lower than the total inelastic cross section.

Higgs Production and Decay

Tools: b-tagging

Low Mass Higgs Channels

2 b jets ~ 1/2 M_H each 0 leptons Missing E_T ~ 100 GeV *Largest expected signal*

2 b jets ~ 1/2 M_H each
1 lepton ~ 50 GeV each
Missing E_T ~ 50 GeV
Highest production X-sec

w* \/\/\/\

$WH \rightarrow I_Vbb$

WH → lvbb: Neural Net

Combining WH Results

Combining WH Results

Limits relative to SM expectation

Combining WH Results

MET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 NN output

5

ZH → vvbb

Upcoming improvements:

- Analyse complete dataset
- QCD-multijet understanding.
- Run IIb Level 1 CAL trigger upgrade.
- Include single-tag.

ZH → vvbō

Upcoming improvements:

- Analyse complete dataset
- QCD-multijet understanding.
- Run IIb Level 1 CAL trigger upgrade.
- Include single-tag.

obs: 8.0

125 130 135

140 145 150 155

 M_{H} (GeV/c²)

1 🗄 I

110

115

120

ZH → IIbō: DØ

ZH → IIbō: DØ

Neural Net

$S/B \sim 0.53/74$ before NN

ZH → IIbō: DØ

$S/B \sim 0.53/74$ before NN

ZH → IIbō: CDF

Two independent neural nets are trained to separate ZH from

- tī background
- Z+jet background

Tevatron Combination

combination December 2007 arXiv:0712.2383

Projecting Higgs Reach to 2010

Improvements assumed in projections

- b-tagging
 - b-tagging with Layer 0 (~8% per tag efficiency increase, DØ)
 - add semileptonic b-tags (~5% per tag efficiency increase, DØ)
 - improved usage of existing taggers (~25%, CDF)
 - add single-b-tag channel to $ZH \rightarrow vvbb$ (DØ)
- Acceptance

. . .

- include forward electrons in WH (DØ)
- include 3-jet sample in WH (DØ)
- 25% trigger acceptance (CDF)
- Analysis techniques
 - improved multivariate analyses (~20% in sensitivity)
 - better usage of ET^{miss}
 - di-jet mass resolution (from 18% to 15% in $\sigma(m)/m$, DØ)
- scaling of systematic uncertainties as a function of luminosity Additional improvements not yet included in projection inclusion of tau channels charm rejection in single b-tag analyses
 - optimizing H→WW at low mass

Higgs Status and Projections

Rob Roser, P5 Meeting, 01/02/08

Conclusion

With data accumulated by the end of 2010, we expect

- 95% exclusion possible over almost entire allowed mass range
- 3σ evidence possible at low and high ends of range

Backup Slides

Limit Setting

- In the absence of signal, we set limits on Standard Model Higgs boson production
 - ✗ We calculate limits via the CLs prescription:

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$

 ${\pmb \times}~$ Using a Log-Likelihood Ratio test statistic:

$$Q(\vec{s}, \vec{b}, \vec{d}) = \prod_{i=0}^{N_{chan}} \prod_{j=0}^{N_{bins}} \frac{(s+b)_{ij}^{d_{ij}} e^{(s+b)_{ij}}}{d_{ij}!} / \frac{b_{ij}^{d_{ij}} e^{b_{ij}}}{d_{ij}!}$$

 $LLR = -2 \times LogO$

d_{ii} refers to "data" for model being tested

- Distributions of simulated outcomes are populated via Poisson trial with mean values given by B-only or S+B hypotheses
 - ✗ Systematics are folded in via Gaussian marginalization
 - ✗ Correlations held amongst signals and backgrounds

Limit Setting: LLR

Tevatron Combination

