Heavy Higgs Boson Searches at the Tevatron

Aidan Robson Glasgow University

Higgs-Maxwell workshop, 13 February 2008

- ♦ H→WW channel
- Limit-setting
- Analysis techniques
- Analysis stability
- Improving sensitivity
- Current limits
- Projections

A physics programme

H→WW

Aidan Robson

Glasgow University

Limit setting

Tevatron Run II Preliminary, m_H=160 GeV/c²

Median = expected limit

Observed

---- Median ±1σ

 $\pm 2\sigma$

2 2.5 3 3.5 4 4.5 5

95% CL Limit/SM

- Construct test statistic $Q = P(data|H_1)/P(data|H_0)$ $-2lnQ = \chi^2(data|H_1) - \chi^2(data|H_0)$, marginalized over nuisance params except $\sigma_{\rm H}$
- Find 95th percentile of resulting σ_H distribution
 this is 95% CL upper limit.
- When computed with collider data this is the "observed limit"
- Repeat for pseudoexperiments drawn from expected distributions to build up expected outcomes

Expected outcomes

0.5

0

1 1.5

What have we found?

Overview of Analyses

Cut-based analysis

Spin structure WW vs H->WW \ldots lepton $\Delta\phi$

Parity violation Higgs is scalar ⇒ charged leptons go in ~ same direction

Low masses: one W off-shell so one lepton lower in energy

Neural network method

- ♦ Various versions. Current:
- Apply preselection (eg $\not{\!\! E}_T$ to remove Drell-Yan)
- Train on {all backgrounds / WW} against Higgs
 m =110,120, 160, 200 (possibly separate ee eu
- m_{H} =110,120...160...200 { possibly separate ee,eµ,µµ }

Aidan Robson

Glasgow University

What have we found???

Last summer, CDF had 3 analyses:

Matrix Element, Neurobayes Neural Net, TMVA Neural Net

- expected sensitivities all similar
- input distributions: well modeled
- observed limits...

What have we found???

Last summer, CDF had 3 analyses:

Matrix Element, Neurobayes Neural Net, TMVA Neural Net

- expected sensitivities all similar
- input distributions: well modeled
- observed limits...

Excess in one of the 3 analyses!

Aidan Robson

Glasgow University

Grounding in SM measurements

Complementarity

exploit different sensitivities of matrix element / neural net

- ME is leading order
 - remove variables that use jet information from neural net for comparison

verify matrix element method: cycle signal

Aidan Robson

$$R' = \frac{P_{WW}}{P_{WW} + \sum_{i} k_{b}^{i} P_{b}^{i}}$$

Lepton coverage

Luminosity

CDF limit development

CDF limit

CDF Run II Preliminary

 $\int \mathcal{L} = 1.9 f b^{-1}$

$M_H (GeV/c^2)$	110	120	130	140	150	160	170	180	190	200
$-2\sigma/\sigma_{SM}$	32.0	10.4	5.1	3.3	2.4	1.5	1.6	2.2	3.4	4.5
$-1\sigma/\sigma_{SM}$	43.2	14.1	6.8	4.4	3.2	2.0	2.1	3.0	4.6	6.1
$Median/\sigma_{SM}$	60.5	19.7	9.6	6.2	4.4	2.8	2.9	4.1	6.4	8.6
$+1\sigma/\sigma_{SM}$	85.2	28.1	13.7	8.7	6.2	3.9	4.1	5.8	9.1	12.2
$+2\sigma/\sigma_{SM}$	117.2	38.2	18.7	12.0	8.5	5.4	5.7	8.0	12.6	16.6
Observed $/\sigma_{SM}$	69.2	20.1	6.7	4.4	3.0	1.6	1.9	3.1	7.2	12.4

HWW ME+NN

D0 RunIIa+b Preliminary

$m_{\rm H}({\rm GeV})$	120	140	160	180	200
Median $/\sigma_{\rm SM}$	22.2	6.7	2.8	4.4	9.7
Observed $/\sigma_{\rm SM}$	47.3	12.0	2.4	4.7	11.1

D0: Other channels

♦ H→WW μτ_{had} channel 1fb⁻¹

- select τ using neural net
- event likelihoods to separate signal (not currently contributing to overall limit)

Current limit

Aidan Robson Glasgow University

Improving sensitivity: high $m_{\rm H}$

High mass Higgs (~160 GeV)

%'s are in sensitivity

CDF range of achievable improvements

- 10-20% from hadronic taus in W decay (including better id)
 - Ongoing studies
- 25-40% VH→VWW and VBF (jj in final state)
 - Expect good S/B
 - Ongoing studies
- 10-15% more triggers (existing triggers)+ more leptons

Improvements from x1.5 to x2 in sensitivity All improvements validated on analysis/studies with real data/tools

Achievable Sensitivity

Exclusion region grows

Aidan Robson

Glasgow University

October 2007 March 2007 Scenario from Feb 2006

2008 LHC 2007: Pilot Run, Z,W calib? 200pb⁻¹ 2009 2010 LHC 2008: Physics, 1fb⁻¹

Tev 2008 Tev 2007: 4fb⁻¹ : HWW 4x3: at SM limit in the 140-170 range. TOP and W Mass improved as well, so SM fit limits narrower.

- Deviations building from expected limit: we focus on this range for ATLAS 2009. Perhaps SM fit narrowing on this range.
- Higgs is 130-150 OR 170-185. Perhaps SM Fit excludes upper range.

Tev 2009: 3σ at 116: ATLAS 2011? for discovery.

CDF keeps running!?

LHC 2010: 10fb⁻¹: Discover it for > 130.

CDF H →WW

Systematics: CDF H→WW

%	WW	WZ	ZZ	tī	DY	Wγ	W+jets	Higgs
\mathbb{I}_T Modeling	1.0	1.0	1.0	1.0	20.0	1.0	-	1.0
Conversions	-	-	-	-	-	20.0	-	-
NLO Acceptance	5.5	10.0	10.0	10.0	5.0	10.0	-	10.0
Cross-section	10.0	10.0	10.0	15.0	5.0	10.0	-	-
PDF Uncertainty	1.9	2.7	2.7	2.1	4.1	2.2	-	2.2
Lepid $\pm 1\sigma$	1.5	1.4	1.3	1.5	1.5	1.2	-	1.5
Trigger Eff	2.1	2.1	2.1	2.0	3.4	7.0	-	3.3
Total	11.9	14.7	14.6	18.4	21.9	25.6	22.5	10.9

Systematics: D0 H→WW

DØ:	H	\rightarrow	W	W	\rightarrow	ℓ^{\pm}	ℓ'^{\mp}	Anal	ysis
-----	---	---------------	---	---	---------------	--------------	---------------	------	------

Contribution	Η	Diboson	$Z/\gamma^* o \ell \ell$	$W+jet/\gamma$	$t\overline{t}$	QCD
Lepton ID .	$^{+8}_{-5}$	$^{+8}_{-5}$	$^{+8}_{-5}$	$^{+8}_{-5}$	$^{+8}_{-5}$	_
Momentum smearing	2 - 11	2 - 11	2 - 11	2 - 11	2 - 11	_
Trigger	5	5	5	5	5	
Jet Energy Scale	5	10	10	10	10	_
Cross Section	4	4	4	4	4	_
PDF Uncertainty	4	4	4	4	4	
Normalization	—	_	_	20	_	20

Systematics: WH→WWW

Contribution	WH	WZ/ZZ	Charge flips	QCD
Lepton ID/Reco. eff	10	10	0	0
Trigger eff.	5	5	0	0
Cross Section	6	7	0	0
Normalization	0	6	0	0
Instrumental-ee (ee final state)	0	0	32	15
Instrumental-em ($e\mu$ final state)	0	0	0	18
Instrumental-mm ($\mu\mu$ final state)	0	0	+290 -100	32

DØ: $WH \to WWW \to \ell^{\pm}\ell'^{\pm}$ Analysis.

Neural network method TMVA

- ♦ Use TMVA neural nets twice
- Train on Drell-Yan and Higgs m_H=160 ee,eµ,µµ

Pass signal/data/background through DY–H net

N

♦ Cut

Data

HWW WW

DY

Wg

WZ

ZZ

tŦ

fakes

Fit templates

Pass remaining events through WW–H net

Train on WW and Higgs
 m_H=110,120...160...200; ee,eµ,µµ

DY

NN

Achievable sensitivity (CDF only)

Selection

CDF

Precision EWK fits

ME Input Variables

Higgs yields

				Hig	gs Ma	ass (G	eV)				
Category	110	120	130	140	150	160	170	180	190	200	
e e	0.1	0.3	0.6	0.9	1.2	1.4	1.4	1.1	0.8	0.6	
$e \mu$	0.2	0.6	1.3	2.0	2.6	3.1	3.0	2.5	1.8	1.4	Matrix alamont analysis
$\mid \mu \mid \mu$	0.1	0.2	0.5	0.8	1.1	1.3	1.3	1.0	0.7	0.6	
$e \operatorname{trk}$	0.0	0.2	0.4	0.7	0.9	1.2	1.2	1.0	0.7	0.6	2/fb
$\mu ext{ trk}$	0.0	0.1	0.2	0.4	0.6	0.8	0.7	0.6	0.4	0.3	
Total	0.4	1.3	3.0	4.8	6.4	7.8	7.6	6.2	4.4	3.5	
0	110	1.00	100	1.40	$m_H /$	Gev	170	100	100	000	
Category	110	120	130	140	150	100	170	180	190	200	
ee	0.0	0.1	0.3	0.5	0.6	0.7	0.7	0.6	0.4	0.4	Matrix element analysis
eμ	0.1	0.3	0.6	1.0	1.3	1.6	1.6	1.3	1.0	0.8	1/fb
$\mu\mu$	0.0	0.1	0.2	0.4	0.5	0.6	0.6	0.5	0.4	0.3	
e trk	0.0	0.1	0.2	0.3	0.5	0.6	0.6	0.5	0.4	0.3	
μ trk	0.0	0.0	0.1	0.2	0.3	0.4	0.4	0.3	0.2	0.2	
total	0.2	0.6	1.4	2.4	3.2	3.9	3.9	3.3	2.4	2.0	
											1
					m_H /	GeV					
Category	110	120	130	140	150	160	170	180	190	200	
ee	0.0	0.1	0.2	0.4	0.5	0.6	0.6	0.4	0.3	0.2	Neural net analysis
eμ	0.1	0.2	0.2	0.3	0.4	0.6	0.6	0.4	0.3	0.2	1/fb
$\mu\mu$	0.0	0.1	0.2	0.3	0.4	0.6	0.6	0.4	0.3	0.2	
total	0.2	0.3	0.9	1.5	1.9	2.5	2.4	1.8	1.3	0.9	

Aidan Robson

Glasgow University

ME same sign

Aidan Robson

Glasgow University

ME Likelihood Ratio

Systematics

Dilepton Process	Source	Uncertainty(%)
All	Correlated Luminosity	4
	Uncorrelated Luminosity	4
	Lepton Trigger	1
	Track Isolation	2
Higgs	α_s	3
	NNLO(σ/σ_{SM} only)	10
WW	Jet Veto, PDF/ Q^2 on σ_{WW}	8
	Generator	4
Non-WW	Generator	6
	Drell Yan $\not\!\!\!E_T$	30
	Drell Yan $M_{\ell\ell} < 25 {\rm GeV/c^2}$	5

(neural net)

Higgs								
Source	Uncertainty (%)							
	ee	е <i>µ</i>	$\mu\mu$					
Lepton ID, Trigger, Iso	2.1	1.2	1.2					
Non-WW								
Source	Unc	ertain	ty (%)					
	ee	e μ	$\mu\mu$					
Lepton ID, Trigger, Iso	4.1	3.2	5.8					
WW								
Source	Uncertainty (%)							
	ee	е <i>µ</i>	$\mu\mu$					
Lepton ID, Trigger, Iso	2.1	1.2	1.2					

Shape uncertainties (neural net): JES Lepton Energy Scale ISR PDF 🔶 Fakes 40 weights stored per event (Higgs and all backgrounds!)

- and similar for matrix element analysis

Aidan Robson

Systematics

Common uncertainties treated as nuisance parameters:

Luminosity Track isolation Higgs: α_s , NNLO WW: Jet veto, PDF/Q², generator DY: Met modeling, low mass modeling

Shape uncertainties:

Higgs						
Source	Uı	ncertainty (%)			
	ee	eμ	$\mu\mu$			
Jet Energy Scale	-0.0+0.0	-0.0+0.0	-0.0+0.0			
Lepton Energy Scale	-0.3 - 0.4	-0.1+0.0	-0.0+0.1			
ISR	-0.6+0.2	-0.6+0.2	-0.2+0.7			
PDF	-8.1+8.9	-7.7 + 8.4	-7.4 + 8.2			
	Non-WW					
Source	Uı	ncertainty (%)			
	ee	eμ	$\mu\mu$			
Jet Energy Scale	-0.1+2.7	-0.4+9.9	-0.5+0.8			
Lepton Energy Scale	-1.0+1.7	-0.5+0.2	-2.0 - 0.7			
ISR	-0.2+0.2	-2.2+1.2	-2.7+1.4			
Fakes	± 9.1	± 14.5	± 0.7			
PDF	-4.1+4.9	-4.5+5.1	-4.4+5.3			
	WW					
Source	Uı	ncertainty (%)			
	ee	eμ	$\mu\mu$			
Jet Energy Scale	± 0.0	-0.0+0.0	-0.0+0.0			
Lepton Energy Scale	-0.3 - 0.3	-0.0+0.1	-0.0+0.0			
ISR	-3.8+2.0	-3.8+2.0	-3.9+2.0			
PDF	-4.2+4.5	-4.3+4.6	-4.3+4.7			

NN: low-mass, low m_{11}

Sensitivity to low m_H from low m_{ll}

n Higgs events		m_{H}	
	110	160	200
$16 < m_{ll} < 25$	0.05	0.49	0.08
$16 < m_{ll} < 200$	0.21	3.0	1.3
$25 < m_{ll} < 200$	0.16	2.5	1.2
low mass fraction	30%	20%	6%