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• Why are we interested in High Energy Physics?

• Event generation in high energy collisions 

• Quantum Parton Showers 
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Quantum Computing - The Power of the Qubit!

4

“Nature is quantum […] so if 
you want to simulate it, you 
need a quantum computer”  
- Richard Feynman (1982)

Types of Quantum Device:
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Thermal Jump

Quantum  
Tunnelling

Cost

Configuration

Superconductor 
Quantum Computing

Quantum Annealing

Photonic Devices

Quantum Computing has had a lot of successes 
since - most recently with Shor and Deutsch winning 
the Breakthrough Prize and the 2022 Nobel 
Prize going to Quantum Information 
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Types of Quantum Computing Devices
Thermal Jump

Quantum  
Tunnelling

Cost

Configuration

Quantum Annealing Photonic Quantum Devices

H(σ) = − ∑
i,j

Jijσiσj − μ∑
j

hjσj

Type of gate quantum 
computing, manipulating 
photon states

Advantages: 
- Continuous variable devices 
- Only weak interactions with environment

Disadvantages: 
- All states must be Gaussian

Advantages: 
- Well suited to optimisation problems

Disadvantages: 
- Uncontrollable, noisy devices 
- Not universal devices
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Types of Quantum Computing Devices

g g

g

g

g g

q

q

g q

q

g

q g

q

g

p H U

|0i H

U

|0i H X H

|0i H Z H

|0i

|0i

p0

Update

p1

...

n Count |0i

e Emission |0i

h History |0i

1

Single qubit gates

Multi-qubit gates

Superconductor QCs

Advantages: 
- Highly controllable qubits 
- Universal computation
Disadvantages: 
- Small number of qubits, not very fault 
tolerant

Single qubit gates:

Multi-qubit gates:

U3

4

U3 |0⟩ → cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩

4

CNOT |00⟩ → |00⟩, CNOT |10⟩ → |11⟩,
CNOT |01⟩ → |01⟩, CNOT |11⟩ → |10⟩

Qubit model: 

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩
'

✓
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Figure 1: Bloch sphere representation of a qubit

1
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Noisy Intermediate-Scale Quantum Devices

Mutliqubit qubit gates: CNOT gates have 
higher associated errors than single qubit gates.  
 
SWAP errors: SWAP operations require 3 
CNOT gates

T1 times: The time it takes for an excited 
qubit to decay back to the ground state.

Circuit depth! - Compact circuits needed!

Quantum errors:

Transpilation:

Loading the circuit onto the backend, transpilation 
can be used to optimise the circuit: qubit and 
coupling mapping, noise models, etc. 

NISQ devices:

No continuous quantum error  
correction, prone to large noise  
effects from environment. 



Simon Williams - simon.j.williams@durham.ac.uk IPPP Internal Seminar - 10/11/238

The Quantum Walk
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The Quantum Walk
|0i |1i

x = 0 x = 1 x = 2x = �1x = �2

Figure 1: One dimensional walker at position x = 0 can move either left or right depending

on the outcome of the coin flip, | #i and | "i respectively.

HC space. The shift operation is then performed, moving the walker into a superposition

of the position states, x = �1 and x = 1. A measurement after the step collapses the

wavefunction to recover the classical case of the walker being in either the x = �1 or x = 1

position.

The Hadamard coin used here is a balanced unitary coin operation† and therefore the

coin and shift operations can be defined as a single unitary transformation to the initial

qubit state,

U = S · (C ⌦ I), (2.3)

which is applied iteratively to represent the number of steps. For a quantum walk of N

steps, the propagation of the walker is described by the transformation U
N [11]. An exam-

ple of running an N = 100 step one dimensional, linear random walk for both the classical

case and the quantum case is shown in Figure 2. The classical case, shown in Figure 2a, has

been achieved by measuring the coin qubit at each step, removing the superposition from

the system. As expected, the classical walk yields a Gaussian distribution of positions cen-

tred about the initial position of the particle, with the variance �
2 = N . In stark contrast

to the classical case, Figure 2b shows the probability distribution of the quantum random

walk. It is clear to see the quantum interference between the intermediate steps of the

walk process in the distribution. It can be shown [11, 14] that the variance of the quantum

random walk process goes as �
2 ⇠ N

2. This is a remarkable attribute of the quantum

random walker, which propagates quadratically faster through the graph than the classical

walker. The average distance of the walker from the initial position is � =
p

N and � ⇠ N

for the classical and quantum walks respectively.

3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm

†
Strictly speaking, the Hadamard coin introduces a bias to the quantum walk through the phase on the

coin qubit. This is discussed in detail in [11] and references therein. Here we remove this bias by using a

symmetric initial state.

– 3 –

σ2
c = N
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The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm
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– 3 –

C |0⟩ = 1
2 ( |0⟩ + |1⟩)

Coin 
Operation:

σ2
c = N
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– 3 –

}ℋ = ℋC ⊗ ℋP

ℋP = { | i⟩ : i ∈ ℤ}
ℋC = { |0⟩, |1⟩}

C |0⟩ = 1
2 ( |0⟩ + |1⟩)

Coin 
Operation:

σ2
c = N
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3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton
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3 Quantum walk as a parton shower simulation

The quantum walk mechanism provides a natural framework for the simulation of parton

showers.

3.1 Theoretical outline of shower algorithm

We present a discrete QCD, collinear parton shower using the quantum walk framework.

Similarly to the parton shower algorithms presented in References [3, 4], the algorithm
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Quantum Walks with Memory

|pi

|ci H

|mi M

Coin Shift Memory

Figure 1

1

Advantages: 
- Arbitrary dynamics 
- Classical dynamics in unitary evolution

Disadvantages: 
- Tight conditions on quantum advantage

Qubit model: 
Augment system further by adding an additional 
memory space

ℋ = ℋP ⊗ ℋC ⊗ ℋM

Quantum Parton Showers: 
Quantum Walks with memory have proven to be very 
useful for quantum parton showers. 
 
K. Bepari, S. Malik, M. Spannowsky and SW, Phys. Rev. D 
106 (2022) 5, 056002
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Speed up via Quantum Walks

Quantum Walks have long be conjectured to 
achieved at least quadratic speed up

Szegedy Quantum Walks have been proven to 
achieve quadratic speed up for Markov Chain 
Monte Carlo

This has been proven under the condition that the 
MCMC algorithm is reversible and ergodic

Work is ongoing to prove this is true for all QWs, 
but latest upper limits are on par with classical RW
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Typical hadron-hadron collisions are highly 
complex resulting in O(1000) particles

SciPost Physics Codebases Submission

MPIMPI

d�̂0

·

·

·

·

··

Meson

Baryon

Antibaryon

· Heavy Flavour

Hard Interaction
Resonance Decays

MECs, Matching & Merging

FSR

ISR*
QED

Weak Showers

Hard Onium
Multiparton Interactions

Beam Remnants*
Strings

Ministrings / Clusters

Colour Reconnections
String Interactions

Bose-Einstein & Fermi-Dirac
Primary Hadrons

Secondary Hadrons

Hadronic Reinteractions
(*: incoming lines are crossed)

Figure 1: Schematic of the structure of a pp ! tt event, as modelled by PYTHIA. To
keep the layout relatively clean, a few minor simplifications have been made: 1) shower
branchings and final-state hadrons are slightly less numerous than in real PYTHIA events,
2) recoil effects are not depicted accurately, 3) weak decays of light-flavour hadrons are
not included (thus, e.g. a K0

S meson would be depicted as stable in this figure), and 4)
incoming momenta are depicted as crossed (p! �p). The latter means that the beam
remnants and the pre- and post-branching incoming lines for ISR branchings should be
interpreted with “reversed” momentum, directed outwards towards the periphery of the
figure; this avoids beam remnants and outgoing ISR emissions having to criss-cross the
central part of the diagram.

9

The theoretical description of collision 
events is highly complex

Monte Carlo Event 
Generators have been the most 
successful approach to simulating 
particle collisions 

MC Event Generators exploit 
factorisation theorems in QCD - 

SciPost Phys. Codebases 8 (2022)

IPPP Internal Seminar - 10/11/23

Event Generation - What’s the problem?

https://scipost.org/10.21468/SciPostPhysCodeb.8
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Event Generation - What’s the problem?
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Parton Density Functions

Phys. Rev. D 103, 034027

Event Generation - What’s the problem?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.034027
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Phys. Rev. D 103, 034027

Phys. Rev. D 103, 076020

Event Generation - What’s the problem?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.034027
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.076020
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Phys. Rev. D 103, 034027

Phys. Rev. D 103, 076020

JHEP 11 (2022) 035

Event Generation - What’s the problem?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.034027
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.076020
https://arxiv.org/abs/2207.10694
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Parton Shower
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Phys. Rev. D 103, 034027

Phys. Rev. D 103, 076020

Phys. Rev. Lett. 126, 062001

Phys. Rev. D 106, 056002

JHEP 11 (2022) 035

Event Generation - What’s the problem?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.034027
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.076020
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.062001
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.056002
https://arxiv.org/abs/2207.10694
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1. Parameterise phase space in terms of gluon transverse 
momentum and rapidity:
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Figure 1: The phase space of e↵ective gluon emission is discrete, since 1 gluons within a
rapidity region �yg act coherently due to running-coupling e↵ects. The  (or equivalently
the k

2
?) dimension is also quantised, since 2 additional phase space folds opening due to

gluon emission are quantised in units of �yg. See main text for more details.

choice of an evolution variable t, and c) the choice of a momentum mapping sij , sjk $ t, ⇠

which determines the relations between pre-and post-decay momenta.

It is worth noting that all conventional state-of-the-art parton showers use slight vari-

ations of a single algorithm – the “veto algorithm” – to solve Eq. 2.2 numerically. This

algorithm treats the variables t and ⇠ as continuous degrees of freedom. It is thus unsuit-

able for (current) quantum devices. The following section will develop other algorithmic

solutions of Eq. 2.2, guided by keeping in mind the feasibility of NISQ devices.

2.1 Reinterpreting classical parton shower algorithms as random walks

This section extends the classical shower algorithm toolbox by performing several abstrac-

tions of the features of dipole showers. We are led to conclude that the showering process

can be described by creating and sampling from a fixed set of primitive fractal structures,

followed by a translation of the chosen primitive structure into scattering event momenta.

The first step has an elegant implementation on intermediate-scale quantum devices.

The first abstraction to consider is removing the independent treatment of decay prob-

ability and momentum-space integration by absorbing the non-uniform probability density

in Eq. 2.1 into the integration measure. This can be obtained by choosing a phase-space

parametrisation in terms of the gluon’s transverse momentum,

k
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1
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, (2.4)

which leads to
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where ⇤2 is an arbitrary mass scale. Within this phase space parametrisation, allowed

dipole decays are constrained to a triangular region of height L = ln(sIK/⇤2) in the (y, )-

plane, as illustrated by the left-hand panel of Fig. 1. Due to the colour charge of an emitted

– 4 –
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which leads to the inclusive probability:
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where                    and  is an arbitrary mass scale Λ

Due to the colour charge of emitted gluons, the rapidity span 
for subsequent dipole decays is increased. This is interpreted as 
“folding out”
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2. Neglect  splittings and examine transverse-
momentum-dependent running coupling

g → qq

leads to the inclusive probability

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
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11

6
, (2.7)

and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form
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Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional
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loss equation:

Gluons within  act coherently 
as one effective gluon

δyg

R(✓) = exp
⇣
i✓Y

⌘
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
(1)

cR(✓) : |100i ! |1i(cos ✓|0i+ sin ✓|1i)|0i
ciY : ! |1i(cos ✓|00i � sin ✓|11i)

cR(�✓) : ! |1i(cos2 ✓|00i � cos ✓ sin ✓|11i
� sin ✓ cos ✓|11i+ sin2 ✓|01i)

PS : ! |1i(cos2 ✓|00i+ sin2 ✓|01i)/
p

cos4 ✓ + sin4 ✓

d


exp

0

@�
maxZ



d̄

̄

1

A =
d

max
(2)

↵s(k
2
?) =

12⇡

33� 2nf

1

ln(k2?/⇤
2
QCD)

=
const.



1



Simon Williams - simon.j.williams@durham.ac.uk IPPP Internal Seminar - 10/11/2318

Discrete QCD - Abstracting the Parton Shower Method

1 2

!

!/2 = n δyg

︸ ︷︷ ︸

δyg

κ = ln(k2⊥/Λ
2)

y

L

L/2−L/2

1 2

!

!/2 = n δyg

︸ ︷︷ ︸

δyg

κ = ln(k2⊥/Λ
2)

y

L

L/2−L/2

1 2

!

!/2 = n δyg

︸ ︷︷ ︸

δyg

κ = ln(k2⊥/Λ
2)

y

L

L/2−L/2

2. Neglect  splittings and examine transverse-
momentum-dependent running coupling

g → qq

leads to the inclusive probability

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
d



dy

�yg
with �yg =

11

6
, (2.7)

and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form

dtd⇠
d�

2⇡
C

↵s

2⇡

2sik(t, ⇠)

sij(t, ⇠)sjk(t, ⇠)
�(tn, t) =

d


exp

0

@�

maxZ



d̄

̄

1

A =
d

max
(2.8)

Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional

– 5 –

gluon, the rapidity span for subsequent dipole decays (at lower ) is increased with respect

to the originally allowed range. This feature of QCD can be interpreted as “folding out”

smaller triangular regions of additional phase space from the original triangle. Since these

regions may again contribute to allowed decays, this process may repeat, leading to a fractal

structure of triangles-attached-to-triangles. An example structure is shown in the upper

left panel of Fig. 2. This fractal picture is the starting point of successful conventional

dipole showers such as Ariadne [4, 46].

These abstractions already simplify the treatment of parton showering since compli-

cated “splitting functions” have been subsumed into the phase space parametrisation.

Moreover, for fixed coupling ↵s, the inclusive decay rate is uniformly distributed in the

(y, )-plane, allowing for straightforward sampling algorithms. Nevertheless, this continuous-

variable dipole decay picture is not yet suited for current universal quantum devices.

Examining the e↵ect of a transverse-momentum-dependent running coupling – as sup-

ported by higher-order QCD calculations – provides a path to an even simpler picture. We

may write

↵s(k
2
?) =

12⇡

33 � 2nf

1

ln (k2
?/⇤2

QCD)
, (2.6)

where the nf -dependent term arises through g ! qq̄ splitting. Neglecting the latter and

combining the expression with Eq. 2.5 leads to

dP (q(pI)q̄(pK) ! q(pi)g(pj)q̄(pk)) '=
d



dy

�yg
with �yg =

11

6
, (2.7)

and where we have used that in the leading-colour limit C ! CA/2 = 3/2 for any dipole

decay. As argued in [47], interpreting the running-coupling renormalisation group equation

as gain-loss equation means that gluons within a rapidity range �yg act coherently as one

“e↵ective gluon”, as illustrated by 1 in Fig. 1. Thus, the rapidity range of each triangular

phase space region is quantised into multiples of �yg. Since the baseline of an additional

triangle extends to positive y by `/2, the height ` at which to emit e↵ective gluons, i.e.

their  value, is quantised into multiples of 2�yg. Thus, we may model the parton shower by

generating e↵ective gluons at the centre of discrete tiles covering the phase-space triangle.

These realisations form the basis of the “Discrete QCD algorithm” of [47].

Each rapidity slice can be treated independently of any other slice. Inserting Eq. 2.7

into the exclusive decay probability (the second term in the shower master equation,

Eq. 2.2) shows that the exclusive rate for finding an e↵ective gluon in a fixed y-bin takes

the straightforward form

dtd⇠
d�

2⇡
C

↵s

2⇡

2sik(t, ⇠)

sij(t, ⇠)sjk(t, ⇠)
�(tn, t) =

d


exp

0

@�

maxZ



d̄

̄

1

A =
d

max
(2.8)

Thus, for a fixed y-bin, the -value of an e↵ective gluon in Fig. 1 is, to first approximation,

simply given by (number of tiles)�1. This is significantly simpler than in conventional

– 5 –

with

Interpreting the running coupling renormalisation group as a gain-
loss equation:

Gluons within  act coherently 
as one effective gluon

δyg

R(✓) = exp
⇣
i✓Y

⌘
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
(1)

cR(✓) : |100i ! |1i(cos ✓|0i+ sin ✓|1i)|0i
ciY : ! |1i(cos ✓|00i � sin ✓|11i)

cR(�✓) : ! |1i(cos2 ✓|00i � cos ✓ sin ✓|11i
� sin ✓ cos ✓|11i+ sin2 ✓|01i)

PS : ! |1i(cos2 ✓|00i+ sin2 ✓|01i)/
p

cos4 ✓ + sin4 ✓

d


exp

0

@�
maxZ



d̄

̄

1

A =
d

max
(2)

↵s(k
2
?) =

12⇡

33� 2nf

1

ln(k2?/⇤
2
QCD)

=
const.



1

R(✓) = exp
⇣
i✓Y

⌘
=

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆
(1)

cR(✓) : |100i ! |1i(cos ✓|0i+ sin ✓|1i)|0i
ciY : ! |1i(cos ✓|00i � sin ✓|11i)

cR(�✓) : ! |1i(cos2 ✓|00i � cos ✓ sin ✓|11i
� sin ✓ cos ✓|11i+ sin2 ✓|01i)

PS : ! |1i(cos2 ✓|00i+ sin2 ✓|01i)/
p

cos4 ✓ + sin4 ✓

d


exp

0

@�
maxZ



d̄

̄

1

A =
d

max
(2)

↵s(k
2
?) =

12⇡

33� 2nf

1

ln(k2?/⇤
2
QCD)

=
const.



1



Simon Williams - simon.j.williams@durham.ac.uk IPPP Internal Seminar - 10/11/2319

Discrete QCD - Abstracting the Parton Shower Method
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Discrete QCD as a Quantum Walk

|�i B S

|gi S
0

|ci C

|mi M

Coin

Repeat for all slices in fold

Shift Memory

Figure 1: Schematic of the quantum circuit for one slice in the fold. For each slice, the algorithm is split

into three distinct sections: (1) The coin operation, C, controls from the relevant walk memory to apply

the correct coin operation to the coin register; (2) the shift operation first increases the walker’s position

along the base of the fold, B, and then controls from the coin outcome to shift the walker accordingly

to increase the grove baseline, S, and e↵ective gluon position, S
0
; (3) The memory operation, M , then

updates the memory register with the outcome of the coin operation. This is then repeated for all slices

in the primary fold, and any subsequent folds formed.

|�i

|gi

|ci H

|mi

Coin Shift Memory

Figure 2: Schematic for a fold with a single slice of two tiles. There are two equal probability outcomes,

thus a Hadamard coin is used: 50% chance of an e↵ective gluon being created is represented by the |1i
state on the coin qubit. The shift operation increases the walker along the base of the fold, and then,

depending on the outcome of the coin operation, creates a new fold representing an e↵ective gluon. The

gluon is then recorded in the gluon register, and the memory operation updates the memory register with

the outcome of the coin operation. Note that no further calculation is needed, as the new fold created in

the event of an emitted e↵ective gluon is only 1 tile. If the new fold could produce further e↵ective gluons,

then the algorithm is applied recursively until no gluon bearing folds are produced.
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The baseline of the grove structure 
contains all kinematics information

For LEP data there are 24 unique 
grove structures

For LEP data there are 24 unique grove 
structures for  GeVΛQCD ∈ [0.1,1]

The Discrete-QCD dipole cascade can 
therefore be implemented as a simple 
Quantum Walk
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Discrete QCD - Grove Structures
(A) (B) (C) (D) (E) (F)

(G) (H) (I) (J) (K) (L)

(M) (N) (O) (P) (Q) (R)

(S) (T) (U) (V) (W) (X)
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Generating Scattering Events from Groves

Once the grove structure has been selected, event data can be synthesised in the following steps using 
the baseline:

1. Create the highest  effective gluons first (i.e. go from top to bottom in phase space)

2. For each effective gluon  that has been emitted from a dipole , read off the values ,  and  
from the grove

3. Generate a uniformly distributed azimuthal decay angle , and then employ momentum mapping (here 
we have used Phys. Rev. D 85, 014013 (2012), 1108.6172 ) to produce post-branching momenta

κ

j IK sij sjk sIK

ϕ

The algorithm has been run on both the ibm_qasm_simulator and the ibm_algiers 27 qubit device.  
A like-for-like classical implementation has been used as a comparison.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.85.014013
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Discrete QCD as a Quantum Walk - Raw Grove Simulation 

A B C D E F G H I J K L M N O P Q R S T U V W X
Primitive Grove Structure
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The algorithm has been run on the 
IBM Falcon 5.11r chip

The figure shows the uncorrected 
performance of the ibm_algiers 
device compared to a simulator

The 24 grove structures are generated 
for a  GeV, corresponding 
to typical collisions at LEP.

ECM = 91.2

Main source of error from CNOT 
errors from large amount of SWAPs
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Collider Events on a Quantum Computer

Aleph data (EPJC 35 (2004) 457ff)
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Quantum Pathways for Charged Track Finding in High-Energy Collisions,   
C. Brown, M. Spannowsky, A. Tapper, SW and I. Xiotidis, arXiv:2311.00766

Quantum Charged Track Finding

https://arxiv.org/pdf/2311.00766.pdf
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Track Finding via Associative Memory 
A critical stage of event reconstruction and 
classification in modern colliders is the identification 
of charged particle trajectories

Highly granular detectors are used to efficiently 
measure the position of charged particles as 
they move through the detector

Classical techniques like Associative Memory 
have been shown to be highly effective, but 
new approaches are required as collider energy 
and luminosity increase to handle the growing 
number of tracks and combinatorics
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Quantum Amplitude Amplification

|s0i

|wi

|si

Sf |si

DSf |si

✓
2
✓
2

✓

The aim is to identify interesting states in a database 
 with interesting states  encoded 

on a quantum device as 
X = {x0, x1, . . . , xN} mi

|s⟩ = + |0⟩⊗n

Marking interesting states,  using the oracle|m⟩

Amplify marked states using the diffusion operation:

f(x) = {1 if x = m,
0 otherwise .

Sf |x⟩ = (−1) f(x) |x⟩

D = +†S0+
Therefore, can iteratively apply the Grover Iterator:

, = +†S0+Sf
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Quantum Amplitude Amplification

.

.
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|0i

A Sf A�1 S0 A
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Oracle

Repeat t-times

Di↵user

Figure 1: Schematic circuit diagram for the Grover Search algorithm on n qubits.
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The optimal number of iterations of the QAA 
routine  is given by,

t = ⌊π
4

N
m ⌋

QAA therefore scales as , thus 
achieving a polynomial speedup over 
classical search algorithms, which scale as 

-( N)

-(N)

After  iterations of , measurement will 
return a marked state with high probability

t ,

Oracle Construction
Consider a two qubit example where  is the 
marked state

|11⟩

Sf : I ⊗ |0⟩⟨0 | + Z ⊗ |1⟩⟨1 |
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Repeat t-times

Di↵user

Figure 2: Schematic circuit diagram for the the template matching algorithm.

Z
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Quantum Template Matching
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Figure 2: Schematic circuit diagram for the the template matching algorithm.

2

The perform template matching, we must 
abstract the QAA routine by constructing 
a new oracle

Introducing a new data register and acting 
the oracle across two registers allows for 
data to be parsed directly to the 
algorithm  

The oracle is constructed from a series of 
CNOT gates and a phase inversion about 
the zero state on the template register

The diffusion operation then has the same form 
as the regular QAA routine

, = +†S0+S′ f
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Quantum Template Matching for Track Finding
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Quantum Track Finding with Missing Hits

A primary challenge for track finding algorithms 
is when a particle traverses a detector without 
registering a hit in one or more detector module

An Associative Memory approach to track 
finding cannot manage missing hit data

Modifying the oracle allows for the 
quantum template algorithm to efficiently search 
on missing hit data, without an increase in 
resources and retaining the high accuracy 
and speedup
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Quantum Track Finding with Missing Hits
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What next for Quantum Computing in 
Hight Energy Physics?
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The Future of Quantum Computing

Better technology?

New technology could be the answer - will new 
qubit hardwares be more fault tolerant?

A lot of emphasis on more qubits, but without 
fault tolerance, large qubit devices become 
impractical

|0⟩

|1⟩

|ψ ⟩

ϕ

θ

|0⟩

|1⟩

|ψ ⟩

ϕ

θ

|0⟩

|1⟩

|ψ ⟩

ϕ

θMore qubits? Be better architects?

Realistic algorithms are already being created for 
NISQ devices. Efficient architectures allow for 
practical algorithms on NISQ devices. 

IBM Roadmap

On track to deliver 
1000 qubits in 
2023



Summary
High Energy Physics is on the edge of a computational frontier, 
the High Luminosity Large Hadron Collider and FCC will provide 
unprecedented amounts of data

Quantum Computing offers an impressive and powerful tool to 
combat computational bottlenecks, both for theoretical and 
experimental purposes

The first realistic simulation of a high energy collision has 
been presented using a compact quantum walk implementation, 
allowing for the algorithm to be run on a NISQ device

We present an efficient approach to track finding using quantum 
computers by exploiting the QAA routine and employing a novel 
oracle paving the way for practical quantum track finding  
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Running on a Quantum Simulator
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Quantum shower (ibmq_qasm_simulator)
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Collider Events on a Quantum Computer

Aleph data (EPJC 35 (2004) 457ff)
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Delphi data (Z.Phys C73 : 11ff (1996))
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Collider Events on a Quantum Computer - Varying Λ
Aleph data (EPJC 35 (2004) 457ff)
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Opal data (EPJC 17 (2000) 19ff)
Dqcd, nominal
Dqcd, Λ = 0.3 GeV
Dqcd, Λ = 0.5 GeV
Dqcd, Dire tune
Dqcd, Monash tune
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Varying values for the mass scale . This leads to non-negligible uncertainties, however this is expected 
from a leading logarithm model.
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Collider Events on a Quantum Computer - Varying Λ

Opal data (EPJC 7 (1999) 369ff)
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Varying values for the mass scale . This leads to non-negligible uncertainties, however this is expected 
from a leading logarithm model.
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Collider Events on a Quantum Computer

Opal data (EPJC 17 (2000) 19ff)
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Aleph data (EPJC 35 (2004) 457ff)
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Collider Events on a Quantum Computer - Changing tune

PDG (Phys.Lett.B 1 (2000) 667ff)
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Observables dominated by non-perturbative dynamics show mild dependence on the mass scale , 
but are highly sensitive to changes in the tune.
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