Crewther's Relation in Gauge-Parameter Dependent Schemes Based on work completed in collaboration with John Gracey arXiv:2306.11416 [hep-ph] and arXiv:2309.16554 [hep-ph]

Robert Mason

December 15, 2023

Primary Supervisor and Collaborator: John Gracey Secondary Supervisor: Thomas Teubner Crewther's Relation in Gauge-Parameter Dependent Schemes Based on work completed in collaboration with John Gracey arXiv:2306.11416 [hep-ph] and arXiv:2309.16554 [hep-ph]

Robert Mason

December 15, 2023

Primary Supervisor and Collaborator: John Gracey Secondary Supervisor: Thomas Teubner

Motivation

- Crewther's relation equates the β -function to the Adler D function, the Bjorken sum rule and a new perturbative series.
- The relation as originally stated fails for gauge-parameter dependent schemes, except at certain values of the gauge parameter at low loop order, including $\alpha = -3$.
- Using the methodology we developed we consider this issue in a variety of different schemes and gauge-fixing terms in order to address this issue.

Crewther's Relation

• Crewther's original relation was found using non-perturbative methods in a conformal system

$$C(a)D(a) = d_R, \qquad (1)$$

C(a) is the Bjorken sum rule, D(a) is the Adler D function with $a = \frac{g^2}{(4\pi)^2}$.

• Broadhurst and Kataev modified this relation for perturbative systems

$$CD = d_R(1 + \Delta_{CSB})$$
 where $\Delta_{CSB} = K \frac{\beta}{a}$

which holds to all available orders in $\overline{\text{MS}}$.

 \sim

Crewther's Relation

• Rewrite the series as

$$K(a) = \left[\frac{C(a)D(a) - d_R}{d_R\beta(a)}\right]a.$$
 (2)

We can always define expansion coefficients for $K(a) = \sum_i K_i a^i$ such that this relation holds.

• K(a) has the structure of other perturbative series. In particular, for $\rho(a) = C(a)$, D(a) or K(a):

$$\rho(a) = \rho^{(0)} + \rho^{(1)}_{C_F} C_F a + a^2 C_F \left[C_A \rho^{(2)}_{C_F C_A} + C_F \rho^{(2)}_{C_F^2} + T_f N_f \rho^{(2)}_{C_F T_f} \right]
+ a^3 C_F \left[C_F^2 \rho^{(3)}_{C_F^3} + C_F C_A \rho^{(3)}_{C_F^2 C_A} + C_A^2 \rho^{(3)}_{C_F C_A^2} + C_F T_f N_f \rho^{(3)}_{C_F T_f} \right]
+ C_A T_f N_f \rho^{(3)}_{C_F C_A T_f} + T_f^2 N_f^2 \rho^{(3)}_{C_F T_f^2} \right] + \mathcal{O}(a^4)$$
(3)

• For example

$$\begin{split} \mathrm{K}^{\overline{\mathrm{MS}}}(\mathrm{a}) &= +\frac{3}{2} \left[8\zeta_{3} - 7 \right] \mathrm{C_{F}a} \\ &+ \left[\left(\frac{326}{3} - \frac{304}{3} \zeta_{3} \right) \mathrm{N_{f}T_{F}} + \left(\frac{884}{3} \zeta_{3} - \frac{629}{2} \right) \mathrm{C_{A}} \right. \\ &+ \left(\frac{397}{6} - 240\zeta_{5} + 136\zeta_{3} \right) \mathrm{C_{F}} \right] \mathrm{C_{F}a^{2}} \\ &+ \mathcal{O}(\mathrm{a}^{3}). \end{split}$$

mMOM

- The mMOM scheme is a gauge-parameter dependent scheme, meaning its β -function coefficients explicitly contain the gauge parameter α .
- It is defined so that its field two-point functions have no order a corrections at a characteristic scale.
- The vertex function is defined such that the ghost-gluon vertex is finite to all orders for a general gauge parameter, this is practically implemented through the relation

$$Z_{g}^{\overline{\rm MS}}\sqrt{Z_{A}^{\overline{\rm MS}}}Z_{c}^{\overline{\rm MS}} = Z_{g}^{mMOM}\sqrt{Z_{A}^{mMOM}}Z_{c}^{mMOM} \qquad (5)$$

where Z_{ϕ} are the renormalization constants of ϕ .

Crewther's Relation in the mMOM Scheme

• Garkusha, Kataev and Molokoedov calculated the Crewther series in this scheme. The $\mathcal{O}(a^2)$ coefficient is

$$\begin{split} \mathrm{K}_{2}(\alpha) &= \frac{\mathrm{C}_{\mathrm{F}}}{12} \Bigg[(-2880\zeta_{5} + 1632\zeta_{3} + 794) \mathrm{C}_{\mathrm{F}} \\ &+ (2184\zeta_{3} - 2591) \mathrm{C}_{\mathrm{A}} - (576\zeta_{3} - 744) \mathrm{N}_{\mathrm{f}} \mathrm{T}_{\mathrm{f}} \Bigg] \\ &+ 3(7 - 8\zeta_{3}) \mathrm{C}_{\mathrm{F}} \mathrm{C}_{\mathrm{A}} \Bigg[\frac{(31 + 12\alpha + 3\alpha^{2}) \mathrm{C}_{\mathrm{A}} - 8 \mathrm{N}_{\mathrm{f}} \mathrm{T}_{\mathrm{f}}}{88 \mathrm{C}_{\mathrm{A}} - 32 \mathrm{N}_{\mathrm{f}} \mathrm{T}_{\mathrm{f}}} \Bigg] \alpha. \end{split}$$

$$\end{split}$$

• Factorises as ordinary perturbative series if $\alpha = 0, -1$ or -3. But the latter two fail again at $\mathcal{O}(a^3)$.

• Is there a way in which we can define a perturbative series for a general gauge parameter such that Crewther's relation holds in the mMOM scheme?

Fixed Points

- From Crewther's original argument, the product of the Adler D function and the Bjorken sum rule should be a constant in a conformally invariant system.
- We can enforce conformal invariance by considering the system at a fixed point, such that the running of the formal parameters are stationary.
- For gauge-parameter dependent schemes the formal parameters are the coupling constant a and the gauge parameter α .
- We find fixed points by solving

$$\begin{aligned} \frac{da}{dl} &= \beta(a_{\infty}, \alpha_{\infty}) = 0 \qquad \text{and} \qquad \frac{d\alpha}{dl} &= \alpha_{\infty} \gamma_{\alpha}(a_{\infty}, \alpha_{\infty}) = 0, \end{aligned}$$
where $l = \ln \frac{\mu^2}{\Lambda^2}$.

Loop Corrections

Define the α such that the original Crewther relation holds

 $\alpha = \alpha_0 + \alpha_1 a \quad \text{where} \quad \alpha_1 = \alpha_{T_f}^{(1)} T_f N_f + \alpha_{C_F}^{(1)} C_F + \alpha_{C_A}^{(1)} C_A \quad (7)$ For SU(3) mMOM we find

$$\alpha = -3 + \left[(2N_f - 33)\alpha_{T_f}^{(1)} - 36 \right] \frac{a}{4}.$$
 (8)

We can evaluate this at the fixed points a_{∞} and compare to the gauge-parameter of the consistent infra-red stable fixed point

Loop Order	a_{∞}	α_{∞}	$\left. \bar{\alpha}(a_{\infty}) \right _{\alpha_{T_{f}}^{(1)}=2}$
2	0.003200	-3.030182	-3.030402
3	0.003138	-3.027421	-3.029812
4	0.003143	-3.027354	-3.029859
5	0.003143	-3.027377	-3.029862

Fixed Point

Ν	a_{∞}	α_{∞}	$3(1 + \Delta_{csb}^{2L})$	$3(1 + \Delta_{csb}^{3L})$
2	0.0033112583	0.0000000000	2.9999991596	3.0000039877
	9.1803474173	2.4636080795	1271156.8083213258	17202735.3015072510
	0.0032001941	-3.0301823312	2.9999982468	3.0000012469
3	0.0031177883	0.0000000000	2.9999963264	3.0000001212
	0.1279084604	1.9051106246	6.2952539870	10.1893903424
	0.0031380724	-3.0274210489	2.9999973439	3.0000001217
4	0.0031213518	0.0000000000	2.9999963720	3.0000001843
	0.1902883419	0.0000000000	13.5399867931	66.1969134786
	0.1162651496	0.5286066929	5.3930704057	11.8942763573
	0.0031430130	-3.0273541344	2.9999974127	3.0000002080
5	0.0031220809	0.0000000000	2.9999963814	3.0000001972
	0.0577103776	0.0000000000	3.2818695828	3.7273436677
	0.0031434144	-3.0273765993	2.9999974183	3.0000002151
	0.0502252330	-3.8653031470	3.1912609578	3.2787374506

The Crewther product, $C(a, \alpha)D(a, \alpha)$ evaluated at fixed points in the mMOM where the anomalous dimensions are taken to the N loop level.

Fixed Point

We could instead consider the same product at roots of the β function given a fixed non-zero gauge parameter, as in the table below for $\alpha = 1$.

mMOM $\alpha = 1 \beta$ function zero							
FP Loop Order	a	$3(1+\Delta_{\rm csb}^{\rm 2L})$	$3(1 + \Delta_{\rm csb}^{\rm 3L})$				
2	0.0039840637	3.0000169021	3.0000244250				
3	0.0037731278	3.0000104128	3.0000164646				
4	0.0037925523	3.0000109619	3.0000171393				
5	0.0037946540	3.0000110219	3.0000172130				

Crewther Graphs

Figure 1: Δ_{CSB} to $\mathcal{O}(a^4)$ in the mMOM scheme for different α values with a selected as the minimum real, positive value of the coupling constant such that the $\beta_{\text{mMOM}} = 0$.

Scheme Change

- The product of the Adler and Bjorken sum rules is measurable and so its value is scheme independent up to order in truncation.
- The β function transforms under a scheme change according to

$$\beta(\mathbf{a}) = \beta_{\mathrm{S}}(\mathbf{a}_{\mathrm{S}}, \alpha_{\mathrm{S}}) \frac{\partial \mathbf{a}(\mathbf{a}_{\mathrm{S}}, \alpha_{\mathrm{S}})}{\partial \mathbf{a}_{\mathrm{S}}} + \alpha_{\mathrm{S}} \gamma_{\alpha}^{\mathrm{S}}(\mathbf{a}_{\mathrm{S}}, \alpha_{\mathrm{S}}) \frac{\partial \mathbf{a}(\mathbf{a}_{\mathrm{S}}, \alpha_{\mathrm{S}})}{\partial \alpha_{\mathrm{S}}}.$$

The Extended Crewther Relation

Taking Crewther's relation in $\overline{\text{MS}}$ with $\Delta_{\text{csb}} = K_{\text{a}}^{\beta} = K_{\text{a}}\beta$ we can consider how tis transforms under scheme change to give an extended new form of Crewther's relations The form of the conformal symmetry breaking term then transforms as

$$\begin{split} \Delta_{csb}(a) &= \Delta^S_{csb}(a_S, \alpha_S) = K^S_a(a_S, \alpha_S) \beta_S(a_S, \alpha_S) \\ &+ K^S_\alpha(a_S, \alpha_S) \alpha_S \gamma^S_\alpha(a_S, \alpha_S). \end{split}$$

The K_a and K_α series can be calculated using

$$\begin{split} \mathbf{K}_{\mathbf{a}}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}) &= \frac{\partial \mathbf{a}}{\partial \mathbf{a}_{\mathbf{S}}} \Big[\mathbf{K}_{\mathbf{a}}(\mathbf{a}) \Big] \Big|_{\overline{\mathbf{MS}} \to \mathbf{mMOM}} \end{split} \tag{9} \\ \mathbf{K}_{\alpha}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}) &= \frac{\partial \mathbf{a}}{\partial \alpha_{\mathbf{S}}} \Big[\mathbf{K}_{\mathbf{a}}(\mathbf{a}) \Big] \Big|_{\overline{\mathbf{MS}} \to \mathbf{mMOM}} \tag{10} \end{split}$$

Crewther's Relation in the mMOM Scheme

We find the Crewther series for the mMOM scheme

$$\begin{split} & K_a^{mMOM}(a,\alpha) = 2(8\zeta_3-7) \\ & + \Big[(-15552\zeta_3+13608)\alpha^2+(-31104\zeta_3+27216)\alpha \\ & + (-20736N_f+628416)\zeta_3+26784N_f-276480\zeta_5 \\ & -483432\Big]\frac{a}{648}+[...]a^2, \end{split}$$

$$K_{\alpha}^{mMOM}(a,\alpha) = -3(\alpha+1)(8\zeta_3 - 7)a^2 + [...]a^3.$$
(11)

Ambiguity

We can define \bar{K}_a and \bar{K}_{α} which obey the same relation when defined through the transformation

$$\bar{\mathbf{K}}_{\mathbf{a}}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}) = \mathbf{K}_{\mathbf{a}}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}) - \mathbf{F}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}})\alpha_{\mathbf{S}}\gamma_{\alpha}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}), \quad (12)$$
$$\bar{\mathbf{K}}_{\alpha}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}) = \mathbf{K}_{\alpha}^{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}) + \mathbf{F}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}})\beta_{\mathbf{S}}(\mathbf{a}_{\mathbf{S}}, \alpha_{\mathbf{S}}). \quad (13)$$

Consider F_0 such that $\bar{K}^s_{\alpha}(F_0; a_s, \alpha_s) = 0$. In the mMOM scheme this would require a series such that

$$F_0(a,\alpha) = -\frac{K_{\alpha}^{mMOM}(a,\alpha)}{\beta^{mMOM}(a,\alpha)} \approx -\frac{3(\alpha+1)(8\zeta_3-7)}{11-\frac{2}{3}N_f} + \mathcal{O}(a).$$
(14)

Connection to BZ twin

• The $\alpha = -3$ value identified can thus be understood as the point near the IRS stable FP

$$\gamma_1(-3) = \left[-\frac{1}{2}\alpha C_A + \frac{13}{6}C_A - \frac{4}{3}N_f T_F \right] \Big|_{\alpha=-3} = \beta_0,$$

• We can therefore write Crewther's relation in the mMOM scheme to $\mathcal{O}(a^3)$ as

$$\Delta_{csb}(a, -3) = -K_a^{(0)}\beta_0 a^2 - [K_a^{(0)}\beta_1(-3) + (K_a^{(1)} - 3K_\alpha^{(2)}(-3))\beta_0]a^3$$

• Therefore if we relabel the leading order K_a term

$$K_{a}^{(1)} + 3K_{\alpha}^{(2)}(-3) \to K_{a}^{(1)}.$$
 (15)

we arrive at the original Crewther relation to LO.

Outlook

- For gauge parameter dependent schemes the conformal properties should be described by the running of both couplings, a and α, and therefore the Crewther relation should then be modified to include this.
- Given the transformation equations in the series for any scheme can be found from the $\overline{\text{MS}}$, although the resultant series is not unique.
- While our exemplar has been mMOM, these relations hold true both for a variety of schemes and for several different gauge fixing terms and so for pQCD in general.

Generalisation

• An extension to this for systems of n dynamical variables g_i where i = 1, ..., n, would be:

$$\Delta_{csb}^{s}(g_{i}^{s}) = \sum_{i} K_{g_{i}}^{s}(g_{i}^{s}) \left(\frac{dg_{i}^{s}}{dl}\right).$$
(16)

• Which is suggestive of

$$\Delta^{\rm s}_{\rm csb}(g^{\rm s}_{\rm i}) = \frac{\rm d}{\rm dl} \kappa^{\rm s}(g^{\rm s}_{\rm i}) = \left[\sum_{\rm j} \partial^{\rm s}_{\rm g_{\rm j}} \kappa(g^{\rm s}_{\rm i}) \frac{\rm dg^{\rm s}_{\rm j}}{\rm dl}\right]$$
(17)

where $\partial_{g_j}^s = \frac{\partial}{\partial g_i^s}$.

Generalisation

• For our two-coupling theory this reduces to

$$\Delta^{s}_{csb}(a_{s},\alpha_{s}) = \left(\partial^{s}_{a}\kappa^{s}(a_{s},\alpha_{s})\right)\beta^{s}(a_{s},\alpha_{s}) + \left(\partial^{s}_{\alpha}\kappa^{s}(a_{s},\alpha_{s})\right)\alpha_{s}\gamma^{s}_{\alpha}(a_{s},\alpha_{s}).$$
(18)

• In $\overline{\mathrm{MS}}$ then

$$K_{a}^{\overline{MS}}(a_{\overline{MS}}) = \partial_{a}^{\overline{MS}} \kappa^{\overline{MS}}(a_{\overline{MS}}).$$
(19)

κ in $\overline{\mathrm{MS}}$

• κ is then a scheme-invariant quantity, in $\overline{\mathrm{MS}}$

$$\begin{split} \kappa_{a}^{\overline{\rm MS}}(a) &= \kappa_{(0)}^{\overline{\rm MS}} + \left[12\zeta_3 C_F - \frac{21}{2} C_F \right] a \\ &+ \left[\frac{326}{3} N_f T_F C_F + \frac{397}{6} C_F^2 - 240\zeta_5 C_F^2 + 136\zeta_3 C_F^2 \right. \\ &+ \frac{884}{3} \zeta_3 C_F C_A - \frac{629}{2} C_F C_A - \frac{304}{3} \zeta_3 N_f T_F C_F \right] \frac{a^2}{2} \\ &+ \mathcal{O}(a^3) \end{split}$$

Thank you for listening

What we've covered:

- The Crewther equation as originally formulated fails for gauge-parameter dependent schemes.
- To accommodate for this the relation needs to be extended to include running of the gauge-parameter.
- We argue for this using numerical data from fixed points.

References

- [1] R.J. Crewther, Phys. Rev. Lett. 28 (1972), 1421.
- [2] D.J. Broadhurst A.L. Kataev, Phys. Lett. B315 (1993), 179.
 [3] P.A. Baikov, K.G. Chetyrkin J.H. Kühn, Phys. Rev. Lett.

104 (2010), 132004.

[4] A.L. Kataev V.S. Molokoedov, Phys. Rev. D92 (2015), 054008.

[5] A.L. Kataev V.S. Molokoedov, arXiv:2302.03443 [hep-ph].

[6] G. T. Gabadadze A. L. Kataev, JETP Lett. 61 (1995) 448.

[7] R. J. Crewther, Phys. Lett. B 397 (1997) 137.

[8] A.L. Kataev V.S. Molokoedov, J. Phys. Conf. Ser. 938 (2017), 012050.

[9] A.V. Garkusha, A.L. Kataev V.S. Molokoedov, JHEP 02 (2018), 161.

[10] J.A. Gracey, R. H. Mason, T.A. Ryttov R. M. Simms, Phys. Rev. D108 (2023) 4, 045006.

[11] T.A. Ryttov, Phys. Rev. D89 (2014), 016013