QED Sum Rules in B Physics

YTF 2023
Matthew Rowe
(He/Him)
With Roman Zwicky

Gauge variant operators

■ 'Create' meson states with operators, e.g. $J_{B}=m_{b} \bar{b} i \gamma_{5} q$.

$$
\langle\bar{B}| J_{B}|0\rangle=m_{B}^{2} f_{B}, \quad \Gamma\left(\bar{B} \rightarrow l^{-} \bar{\nu}\right)=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{8 \pi} m_{l}^{2} m_{B}\left(1-\frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} \times f_{B}^{2}
$$

- Bound states in QED can carry charge. Interpolating operators become gauge variant.

$$
J_{B} \rightarrow e^{-i e\left(Q_{b}-Q_{q}\right) \alpha} J_{B}=e^{-i e Q_{\bar{B}} \alpha} J_{B}
$$

- Introduce a new charged scalar field Φ to compensate.

$$
\Phi J_{B} \rightarrow e^{i e\left(Q_{\Phi}-Q_{\bar{B}}\right) \alpha} \Phi J_{B}=\Phi J_{B}
$$

$\overline{\boldsymbol{B}} \rightarrow \boldsymbol{l} \boldsymbol{v}(\gamma)$ from sum rules

Define the correlator

$$
\Pi^{(\gamma)}\left(p_{B}^{2}\right)=i \int \mathrm{~d}^{D} x e^{i x \cdot\left(p_{\Phi}-p_{B}\right)}\left\langle l^{-} \bar{\nu}(\gamma)\right| T i \mathcal{H}_{w}(x)\left(\Phi_{B} J_{B}\right)(0)\left|\Phi_{B}\left(p_{\Phi}\right)\right\rangle
$$

Insert an identity $I=|0\rangle\langle 0|+\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \frac{1}{2 E_{q}}|\bar{B}(q)\rangle\langle\bar{B}(q)|+$ multiparticle continuum.

$$
\left\langle l^{-} \bar{\nu}(\gamma)\right| i \mathcal{H}_{w}|\bar{B}\rangle\langle\bar{B}| \Phi_{B} J_{B}\left|\Phi_{B}\right\rangle \longrightarrow i \mathcal{A}^{(\gamma)} g_{\Phi}
$$

After integration / dispersion

$$
\Pi^{(\gamma)}\left(p_{B}^{2}\right)=\int \mathrm{d} s \frac{\frac{1}{\pi} \operatorname{Im} \Pi(s)}{s-p_{B}^{2}}=\frac{i \mathcal{A}^{(\gamma)} g_{\Phi}}{m_{B}^{2}-p_{B}^{2}}+\text { continuum }
$$

Partonic computation

■ Calculate $\operatorname{Im} \Pi^{(\gamma)}$ in perturbative QCD/QED via cutting rules.

- Include condensates and Borel transform to get $\mathcal{A}^{(\gamma)}$.

Results

■ Correct IR + gauge behaviour

- No factorisation in QED \rightarrow large hard-collinear logs?
- Cancel for S-P
- Exist in V-A

■ Real dominated for $m_{l} \ll \Delta E$.

$$
\mathrm{B}^{-} \rightarrow \mu^{-} \bar{v}\left(+\gamma_{\Delta}\right)
$$

\% QED Correction

Meson mass splittings

■ Charged and neutral mesons do not have the same mass, $m_{B^{-}} \neq m_{B^{0}}$.

- QED effects $\langle B| T j_{\mu}(x) j_{\nu}(0)|B\rangle$
$-m_{u} \neq m_{d}$.
■ Consider $\Pi \sim \int\langle 0| T J_{B}^{\dagger} j_{\mu} j_{\nu} J_{B}|0\rangle$

- Insert $|\bar{B}\rangle\langle\bar{B}|$ twice (double dispersion)
- Gives $m_{B}^{4} f_{B}^{2} \times\langle B| T j_{\mu}(x) j_{\nu}(0)|B\rangle$.

Thank you for listening

[EXTRA] QCD SR: The main idea

Define a correlator with the right quantum numbers $\Pi\left(q^{2}\right)$
At high energies calculate it in PT
At low energies it can be represented in terms of non-perturbative hadronic quantities
Link the two via complex analysis (a dispersion relation)
Extract hadronic stuff from the PT calculation.

[EXTRA] f_{B} from QCD SR

Define

$$
\Pi\left(p^{2}\right)=i \int \mathrm{~d}^{d} x e^{i p \cdot x}\langle 0| T J_{B}^{\dagger}(x) J_{B}(0)|0\rangle
$$

By Cauchy

$$
\Pi\left(p^{2}\right)=\frac{1}{2 \pi i} \oint \mathrm{~d} z \frac{\Pi(z)}{z-p^{2}}
$$

Provided the circle vanishes at ∞

$$
\Pi\left(p^{2}\right)=\int_{m_{b}^{2}}^{\infty} \frac{\mathrm{d} s}{2 \pi i} \frac{\operatorname{Disc} \Pi(s)}{s-p^{2}}
$$

[EXTRA] f_{B} from QCD SR - 2

On the hadronic side, insert an identity

$$
I=|0\rangle\langle 0|+\int \frac{\mathrm{d}^{3} q}{(2 \pi)^{3}} \frac{1}{2 E_{q}}|\bar{B}(q)\rangle\langle\bar{B}(q)|+\text { multiparticle }
$$

into the correlator

$$
\Pi\left(p^{2}\right)=i \int \mathrm{~d}^{d} x \frac{\mathrm{~d}^{3} q}{(2 \pi)^{3}} \frac{e^{i p \cdot x}}{2 E_{q}} \underbrace{\langle 0| J_{B}^{\dagger}(x)|\bar{B}(q)\rangle}_{m_{B}^{2} f_{B} e^{-i q \cdot x}} \underbrace{\langle\bar{B}(q)| J_{B}(0)|0\rangle}_{m_{B}^{2} f_{B}}
$$

Doing the integrations and taking the discontinuity

$$
\begin{aligned}
& \operatorname{Disc} \Pi\left(p^{2}\right)=2 \pi i m_{B}^{4} f_{B}^{2} \delta\left(p^{2}-m_{B}^{2}\right) \\
& \Longrightarrow \Pi\left(p^{2}\right)=\frac{m_{B}^{4} f_{B}^{2}}{m_{B}^{2}-p^{2}}+\text { continuum }
\end{aligned}
$$

$$
\text { Disc } \frac{1}{x-a+i \epsilon}=-2 \pi i \delta(x-a)
$$

[EXTRA] f_{B} from QCD SR -3

On the partonic side

$$
\begin{aligned}
\Pi\left(p^{2}\right) & =-i m_{b}^{2} \int \mathrm{~d}^{d} x e^{i p \cdot x}\langle 0| \overline{\bar{q}(x) \gamma_{5} b(x) \bar{b}(0) \gamma_{5} q}(0)|0\rangle \\
& =-i m_{b}^{2} N_{c} \int \frac{\mathrm{~d}^{d} l}{(2 \pi)^{d}} \frac{\operatorname{Tr}\left[\gamma_{5}(-l) \gamma_{5}\left(\not p-l+m_{b}\right)\right]}{\left[(p-l)^{2}-m_{b}^{2}\right] l^{2}}
\end{aligned}
$$

Via Cutkosky cutting rules

$$
\operatorname{Disc} \Pi\left(p^{2}\right)=-i m_{b}^{2} N_{c}(-2 \pi i)^{2} \int \frac{\mathrm{~d}^{d} l}{(2 \pi)^{d}} \delta^{+}\left(l^{2}\right) \delta^{+}\left((p-l)^{2}-m_{b}^{2}\right) \times \operatorname{Tr}[\cdots]
$$

[EXTRA] f_{B} from QCD SR - 4

Evaluating the first delta function

$$
\frac{\operatorname{Disc} \Pi\left(p^{2}\right)}{2 \pi i}=\frac{m_{b}^{2} N_{c}}{2 \pi^{3}} \int \frac{\mathrm{~d}^{3} \vec{l}}{2|\vec{l}|} \delta^{+}\left(p^{2}-m_{b}^{2}-2 p \cdot l\right) p \cdot l
$$

Choose the $p-\mathrm{RF}$ for convenience

$$
\begin{aligned}
\frac{\operatorname{Disc} \Pi\left(p^{2}\right)}{2 \pi i} & =\frac{m_{b}^{2} N_{c}}{8 \pi^{3}}\left(p^{2}-m_{b}^{2}\right) \int 4 \pi|\vec{l}| \mathrm{d}|\vec{l}| \delta^{+}\left(p^{2}-m_{b}^{2}-2 \sqrt{p^{2}}|\vec{l}|\right) \\
& =\frac{m_{b}^{2} N_{c}}{8 \pi^{2}} \frac{\left(p^{2}-m_{b}^{2}\right)^{2}}{p^{2}}, \quad p^{2} \geq m_{b}^{2}
\end{aligned}
$$

[EXTRA] f_{B} from QCD SR - 5

Equating the hadronic and partonic representations then:

$$
\frac{m_{B}^{4} f_{B}^{2}}{m_{B}^{2}-p^{2}}+\text { continuum }=\frac{m_{b}^{2} N_{c}}{8 \pi^{2}} \int_{m_{b}^{2}}^{s_{0}} \frac{\mathrm{~d} s}{s-p^{2}} \frac{\left(s-m_{b}^{2}\right)^{2}}{s}+\text { subtractions }
$$

Thus we can calculate f_{B}. In practise we Borel transform $\Pi\left(p^{2}\right) \rightarrow \tilde{\Pi}\left(M^{2}\right)$.

[EXTRA] It's not that simple!

O $0\left(\alpha_{s}^{n}\right)$ corrections
\square Condensates

U UV behaviour (subtractions)
Daughter SR

\square Quark-hadron duality
Borel transformations

- Instantons

[EXTRA] It's not that simple! - 2

Leave a pair of q quark fields uncontracted

$$
\begin{aligned}
\Pi\left(p^{2}\right) & =-i m_{b}^{2} \int \mathrm{~d}^{d} x e^{i p \cdot x}\langle 0| \bar{q}(x) \gamma_{5} b(x) \bar{b}(0) \gamma_{5} q(0)|0\rangle \\
& =-i m_{b}^{2} N_{c} \int \mathrm{~d}^{d} x e^{i p \cdot x}\left(\gamma_{5} S_{b}(x) \gamma_{5}\right)_{\alpha \beta}\langle 0| \bar{q}_{\alpha}(x) q_{\beta}(0)|0\rangle
\end{aligned}
$$

This matrix element would vanish in PT. However it is non-zero due to non-PT effects

$$
\langle 0| \bar{q}_{\alpha}(x) q_{\beta}(0)|0\rangle=\frac{\langle\bar{q} q\rangle}{4 N_{c}} \delta_{\alpha \beta}+\mathcal{O}(x), \quad\langle\bar{q} q\rangle_{2 \mathrm{GeV}}=(-267 \mathrm{MeV})^{3}
$$

This is all formalised via Wilson's Operator Product Expansion (OPE)

$$
\Pi\left(p^{2}\right)=\sum C_{j}\left(p^{2}\right)\langle 0| O_{j}|0\rangle, \quad O_{j}=\left\{I, \bar{q} q, \bar{q} \sigma G q, G^{2}, \ldots\right\}
$$

[EXTRA] Numerics

\square Classic Jamin \& Lange Result

- 3-loop (0 $\left.\left(\alpha_{s}^{2}\right)\right)$ MS
- PT, $\langle\bar{q} q\rangle,\left\langle G^{2}\right\rangle,\langle\bar{q} \sigma G q\rangle$
- Borel window $M^{2} \in[4,6] \mathrm{GeV}$
$\square f_{B}=210 \pm 19 \mathrm{MeV}$
- Errors estimated by varying
 parameters (dashed lines). Mainly \bar{m}_{b}, μ.

