Courant Algebroid Relations and T-duality

Tom De Fraja

Heriot-Watt University
Supervisor: Richard Szabo

Outline

(1) Sigma-models and Courant algebroids
(2) T-duality and Relations
(3) Example
4) Outlook

Wess-Zumino functional

Consider maps f from a worldsheet surface Σ to a target space M. Take (topological) action functional

$$
S_{H}[f]=\int_{V} f^{*} H, \quad H \in \Omega_{\mathrm{cl}}^{3}(M), \quad \partial V=\Sigma .
$$

The variation $\delta S_{H}=0$ is given by generalised vectors $X+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$ such that

Wess-Zumino functional

Consider maps f from a worldsheet surface Σ to a target space M. Take (topological) action functional

$$
S_{H}[f]=\int_{V} f^{*} H, \quad H \in \Omega_{\mathrm{cl}}^{3}(M), \quad \partial V=\Sigma .
$$

The variation $\delta S_{H}=0$ is given by generalised vectors $X+\xi \in \Gamma\left(T M \oplus T^{*} M\right)$ such that

$$
\iota_{X} H=d \xi .
$$

Courant algebroids

The generalised tangent bundle, $T M \oplus T^{*} M$, can be equipped with a pairing and a bracket:

$$
\begin{aligned}
\langle X+\xi, Y+\eta\rangle & =\iota_{X} \eta+\iota_{Y} \xi \\
{[X+\xi, Y+\eta]_{H} } & =[X, Y]+\mathcal{L}_{X} \eta-\iota_{Y} d \xi+\iota_{Y} \iota_{X} H .
\end{aligned}
$$

In general, a (exact) Courant algebroid (CA) is a vector bundle E over M with a pairing and a bracket of sections fitting the sequence
$0 \rightarrow T^{*} M \rightarrow E \rightarrow T M \rightarrow 0$.
One recovers $H \in \Omega_{\mathrm{cl}}^{3}(M)$ by considering a splitting $s: T M \rightarrow E$ and setting

Courant algebroids

The generalised tangent bundle, $T M \oplus T^{*} M$, can be equipped with a pairing and a bracket:

$$
\begin{aligned}
\langle X+\xi, Y+\eta\rangle & =\iota_{X} \eta+\iota_{Y} \xi \\
{[X+\xi, Y+\eta]_{H} } & =[X, Y]+\mathcal{L}_{X} \eta-\iota_{Y} d \xi+\iota_{Y} \iota_{X} H .
\end{aligned}
$$

In general, a (exact) Courant algebroid (CA) is a vector bundle E over M with a pairing and a bracket of sections fitting the sequence

$$
0 \rightarrow T^{*} M \rightarrow E \rightarrow T M \rightarrow 0 . \quad\left(E \cong T M \oplus T^{*} M\right)
$$

One recovers $H \in \Omega_{\mathrm{cl}}^{3}(M)$ by considering a splitting $s: T M \rightarrow E$ and setting

$$
H(X, Y, Z)=\left\langle[s(X), s(Y)]_{E}, s(Z)\right\rangle_{E}
$$

Polyakov term and Isomorphisms

We can also add dynamical data to our sigma model: the Polyakov functional, for a Riemannian metric g on M is

$$
S_{g}[f]=\int_{\Sigma}\|d f\|_{g}^{2} d \mu_{g} .
$$

The data of g can be captured in a generalised metric; a positive definite subbundle $V \subset E$, i.e. $\langle V, V\rangle>0$. For example,

$$
V=\operatorname{gr}(g)=\{X+g(X): X \in T M\} \subset T M \oplus T^{*} M
$$

The data of the full action $S=S_{H}+S_{g}$ is embedded in a CA equipped with a positive definite subbundle V.
Thus, an isomorphism $\Phi: E \rightarrow E^{\prime}$ covering a diffeomorphism
$\phi: M \rightarrow M^{\prime}$ and preserving $\langle,\rangle_{E},[,]_{E}$ and V will yield
Sigma-modles over M and M^{\prime} with the same equations of motion

Polyakov term and Isomorphisms

We can also add dynamical data to our sigma model: the Polyakov functional, for a Riemannian metric g on M is

$$
S_{g}[f]=\int_{\Sigma}\|d f\|_{g}^{2} d \mu_{g} .
$$

The data of g can be captured in a generalised metric; a positive definite subbundle $V \subset E$, i.e. $\langle V, V\rangle>0$. For example,

$$
V=\operatorname{gr}(g)=\{X+g(X): X \in T M\} \subset T M \oplus T^{*} M
$$

The data of the full action $S=S_{H}+S_{g}$ is embedded in a CA
equipped with a positive definite subbundle V
Thus, an isomorphism $\Phi: E \rightarrow E^{\prime}$ covering a diffeomorphism
$\phi: M \rightarrow M^{\prime}$ and preserving $\langle,\rangle_{E},[,]_{E}$ and V will yield
Sigma-modles over M and M^{\prime} with the same equations of motion

Polyakov term and Isomorphisms

We can also add dynamical data to our sigma model: the Polyakov functional, for a Riemannian metric g on M is

$$
S_{g}[f]=\int_{\Sigma}\|d f\|_{g}^{2} d \mu_{g} .
$$

The data of g can be captured in a generalised metric; a positive definite subbundle $V \subset E$, i.e. $\langle V, V\rangle>0$. For example,

$$
V=\operatorname{gr}(g)=\{X+g(X): X \in T M\} \subset T M \oplus T^{*} M
$$

The data of the full action $S=S_{H}+S_{g}$ is embedded in a CA equipped with a positive definite subbundle V.

Polyakov term and Isomorphisms

We can also add dynamical data to our sigma model: the Polyakov functional, for a Riemannian metric g on M is

$$
S_{g}[f]=\int_{\Sigma}\|d f\|_{g}^{2} d \mu_{g} .
$$

The data of g can be captured in a generalised metric; a positive definite subbundle $V \subset E$, i.e. $\langle V, V\rangle>0$. For example,

$$
V=\operatorname{gr}(g)=\{X+g(X): X \in T M\} \subset T M \oplus T^{*} M
$$

The data of the full action $S=S_{H}+S_{g}$ is embedded in a CA equipped with a positive definite subbundle V.
Thus, an isomorphism $\Phi: E \rightarrow E^{\prime}$ covering a diffeomorphism $\phi: M \rightarrow M^{\prime}$ and preserving $\langle,\rangle_{E},[,]_{E}$ and V will yield Sigma-modles over M and M^{\prime} with the same equations of motion.

Courant algebroid relations

T-duality is an equivalence of Sigma-models on different target manifolds M and M^{\prime}, though these are not necessarily diffeomorphic.
diffeomorphism, so we seek to generalise the notion of
isomorphism.
Consider the graph $\operatorname{gr}(\Phi) \subset E \times E^{\prime}$. One sees that

A CA relation $R: E \rightarrow E^{\prime}$ is an isotropic, involutive subbundle of $E \times E^{\prime}$, supported on a submanifold $C \subset M \times M^{\prime}$.

Courant algebroid relations

T-duality is an equivalence of Sigma-models on different target manifolds M and M^{\prime}, though these are not necessarily diffeomorphic. A CA isomorphisms $\Phi: E \rightarrow E^{\prime}$ must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.

A CA relation $R: E \rightarrow E^{\prime}$ is an isotropic, involutive subbundle of $E \times E^{\prime}$, supported on a submanifold $C \subset M \times M^{\prime}$

Courant algebroid relations

T-duality is an equivalence of Sigma-models on different target manifolds M and M^{\prime}, though these are not necessarily diffeomorphic. A CA isomorphisms $\Phi: E \rightarrow E^{\prime}$ must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.
Consider the graph $\operatorname{gr}(\Phi) \subset E \times E^{\prime}$. One sees that

$$
\begin{aligned}
{[\Phi \cdot, \Phi \cdot]_{E^{\prime}}=\Phi\left([\cdot, \cdot]_{E}\right) } & \Longleftrightarrow \operatorname{gr}(\Phi) \text { is involutive in } E \times E^{\prime} \\
\langle\Phi \cdot, \Phi \cdot\rangle_{E^{\prime}}=\langle\cdot, \cdot\rangle_{E} & \Longleftrightarrow \operatorname{gr}(\Phi) \text { is isotropic in } E \times E^{\prime}
\end{aligned}
$$

A CA relation $R: E \rightarrow E^{\prime}$ is an isotropic, involutive subbundle of $E \times E^{\prime}$, supported on a submanifold $C \subset M \times M^{\prime}$.

Courant algebroid relations

T-duality is an equivalence of Sigma-models on different target manifolds M and M^{\prime}, though these are not necessarily diffeomorphic. A CA isomorphisms $\Phi: E \rightarrow E^{\prime}$ must cover a diffeomorphism, so we seek to generalise the notion of isomorphism.
Consider the graph $\operatorname{gr}(\Phi) \subset E \times E^{\prime}$. One sees that

$$
\begin{aligned}
{[\Phi \cdot, \Phi \cdot]_{E^{\prime}}=\Phi\left([\cdot, \cdot]_{E}\right) } & \Longleftrightarrow \operatorname{gr}(\Phi) \text { is involutive in } E \times E^{\prime} \\
\langle\Phi \cdot, \Phi \cdot\rangle_{E^{\prime}}=\langle\cdot, \cdot\rangle_{E} & \Longleftrightarrow \operatorname{gr}(\Phi) \text { is isotropic in } E \times E^{\prime}
\end{aligned}
$$

A CA relation $R: E \rightarrow E^{\prime}$ is an isotropic, involutive subbundle of $E \times E^{\prime}$, supported on a submanifold $C \subset M \times M^{\prime}$.

Isometry and Composition

To preserve the structure of a generalised metric $V \subset E$, one sees that V is the +1 eigenbundle of a $\tau \in \operatorname{Aut}(E)$. If $R:(E, V) \rightarrow\left(E^{\prime}, V^{\prime}\right)$, then R is a generalised isometry if

$$
\left(\tau \times \tau^{\prime}\right)(R)=R .
$$

Contingent on some smoothness conditions, one can compose two relations $R: E \rightarrow E^{\prime}, \tilde{R}: E^{\prime} \rightarrow E^{\prime \prime}$

Isometry and Composition

To preserve the structure of a generalised metric $V \subset E$, one sees that V is the +1 eigenbundle of a $\tau \in \operatorname{Aut}(E)$. If $R:(E, V) \rightarrow\left(E^{\prime}, V^{\prime}\right)$, then R is a generalised isometry if

$$
\left(\tau \times \tau^{\prime}\right)(R)=R .
$$

Contingent on some smoothness conditions, one can compose two relations $R: E \rightarrow E^{\prime}, \tilde{R}: E^{\prime} \rightarrow E^{\prime \prime}$

$$
\tilde{R} \circ R=\left\{\left(e, e^{\prime \prime}\right):\left(e, e^{\prime}\right) \in R \text { and }\left(e^{\prime}, e^{\prime \prime}\right) \in \tilde{R}\right\} \subset E \times \bar{E}^{\prime \prime},
$$

T-duality

T-dual spaces M, M^{\prime} may be fibre bundles over a common base B

T-duality

T-dual spaces M, M^{\prime} may be fibre bundles over a common base B

T-duality

T-dual spaces M, M^{\prime} may be fibre bundles over a common base B

The T-duality relation I

Want to form a CA relation $R: E \rightarrow E^{\prime}$ between CAs E, E^{\prime} over M and M^{\prime} respectively. Need to know how to form CAs on a quotient manifold:
\mathcal{M} is foliated by \mathcal{F}^{\prime}. If \mathcal{E} is an exact $C A$ over \mathcal{M}, then $\mathcal{E} / \mathcal{F}^{\prime}$ will
not be an exact $C A$ over $M=\mathcal{M} / \mathcal{F}^{\prime}$
Take $K^{\prime}=T \mathcal{F}^{\prime} \subset \mathcal{E}$, then

is an exact CA over M
Can form the CA relation $Q\left(K^{\prime}\right)$, supported on $\operatorname{gr}\left(q^{\prime}\right)$,

where $\bigsqcup: K^{\perp} \rightarrow E$ is the quotient map.

The T-duality relation I

Want to form a CA relation $R: E \rightarrow E^{\prime}$ between CAs E, E^{\prime} over M and M^{\prime} respectively. Need to know how to form CAs on a quotient manifold:
\mathcal{M} is foliated by \mathcal{F}^{\prime}. If \mathcal{E} is an exact CA over \mathcal{M}, then $\mathcal{E} / \mathcal{F}^{\prime}$ will not be an exact $C A$ over $M=\mathcal{M} / \mathcal{F}^{\prime}$.
is an exact CA over M
Can form the CA relation $Q\left(K^{\prime}\right)$, supported on $\operatorname{gr}\left(q^{\prime}\right)$

The T-duality relation I

Want to form a CA relation $R: E \rightarrow E^{\prime}$ between CAs E, E^{\prime} over M and M^{\prime} respectively. Need to know how to form CAs on a quotient manifold:
\mathcal{M} is foliated by \mathcal{F}^{\prime}. If \mathcal{E} is an exact CA over \mathcal{M}, then $\mathcal{E} / \mathcal{F}^{\prime}$ will not be an exact CA over $M=\mathcal{M} / \mathcal{F}^{\prime}$.
Take $K^{\prime}=T \mathcal{F}^{\prime} \subset \mathcal{E}$, then

$$
E=\frac{K^{\prime \perp}}{K^{\prime}} / \mathcal{F}^{\prime}
$$

is an exact CA over M.
Can form the CA relation $Q\left(K^{\prime}\right)$, supported on $\operatorname{gr}\left(q^{\prime}\right)$,

The T-duality relation I

Want to form a CA relation $R: E \rightarrow E^{\prime}$ between CAs E, E^{\prime} over M and M^{\prime} respectively. Need to know how to form CAs on a quotient manifold:
\mathcal{M} is foliated by \mathcal{F}^{\prime}. If \mathcal{E} is an exact $C A$ over \mathcal{M}, then $\mathcal{E} / \mathcal{F}^{\prime}$ will not be an exact CA over $M=\mathcal{M} / \mathcal{F}^{\prime}$.
Take $K^{\prime}=T \mathcal{F}^{\prime} \subset \mathcal{E}$, then

$$
E=\frac{K^{\prime \perp}}{K^{\prime}} / \mathcal{F}^{\prime}
$$

is an exact CA over M.
Can form the CA relation $Q\left(K^{\prime}\right)$, supported on $\operatorname{gr}\left(q^{\prime}\right)$,

$$
Q\left(K^{\prime}\right)=\left\{\left(e, \square^{\prime}(e)\right): e \in K^{\perp}\right\} \subset \mathcal{E} \times E
$$

where $\hbar: K^{\perp} \rightarrow E$ is the quotient map.

The T-duality relation II

The T-duality relation $R: E \rightarrow E^{\prime}$ is then the composition

Theorem (DF, Marotta, Szabo [1])

Let V be a generalised metric on E. (Modulo invariance conditions) TFAE

The T-duality relation II

The T-duality relation $R: E \rightarrow E^{\prime}$ is then the composition

Theorem (DF, Marotta, Szabo [1])

Let V be a generalised metric on E. (Modulo invariance conditions) TFAE
(2) There exists a unique generalised metric V^{\prime} on E^{\prime} such that R is a generalised isometry.

The T-duality relation II

The T-duality relation $R: E \rightarrow E^{\prime}$ is then the composition

Theorem (DF, Marotta, Szabo [1])

Let V be a generalised metric on E. (Modulo invariance conditions) TFAE
(1) $K^{\perp} \cap \Phi\left(K^{\prime}\right) \subseteq K$.
(2) There exists a unique generalised metric V^{\prime} on E^{\prime} such that R is a generalised isometry.

The Hopf fibration and its T-dual

Consider $\mathcal{M}=S^{3} \times S^{1}$, with a foliation \mathcal{F} generated by the trivial fibres of S^{1}, and a foliation \mathcal{F}^{\prime} with whose leaves are the S^{1} fibres of the Hopf fibration $S^{3} \rightarrow S^{2}$. Thus $M=\mathcal{M} / \mathcal{F}^{\prime}=S^{2} \times S^{1}$ and $M^{\prime}=S^{3}$. Let $\partial_{\theta}, \partial_{\theta^{\prime}}$ generate $\mathcal{F}, \mathcal{F}^{\prime}$ respectively.

connections on $\mathcal{M} \rightarrow M^{\prime}$ and $\mathcal{M} \rightarrow M$ respectively. Let

$B=\theta \wedge \theta^{\prime} \in \operatorname{Hom}\left(T P, T^{*} P\right)$. Then

Consider the element $w \partial_{\theta}+p \theta \in T M \oplus T^{*} M, w, p \in \mathbb{R}$. The relation R is then given by

The Hopf fibration and its T-dual

Consider $\mathcal{M}=S^{3} \times S^{1}$, with a foliation \mathcal{F} generated by the trivial fibres of S^{1}, and a foliation \mathcal{F}^{\prime} with whose leaves are the S^{1} fibres of the Hopf fibration $S^{3} \rightarrow S^{2}$. Thus $M=\mathcal{M} / \mathcal{F}^{\prime}=S^{2} \times S^{1}$ and $M^{\prime}=S^{3}$. Let $\partial_{\theta}, \partial_{\theta^{\prime}}$ generate $\mathcal{F}, \mathcal{F}^{\prime}$ respectively.
Let $\mathcal{E}=T \mathcal{M} \oplus T^{*} \mathcal{M}$. To choose $\Phi \in \operatorname{Iso}(\mathcal{E})$, let θ, θ^{\prime} be connections on $\mathcal{M} \rightarrow M^{\prime}$ and $\mathcal{M} \rightarrow M$ respectively. Let $B=\theta \wedge \theta^{\prime} \in \operatorname{Hom}\left(T P, T^{*} P\right)$. Then

$$
\Phi(X+\xi)=X+B(X)+\xi
$$

Consider the element $w \partial_{\theta}+p \theta \in T M \oplus T^{*} M, w, p \in \mathbb{R}$. The relation R is then given by

The Hopf fibration and its T-dual

Consider $\mathcal{M}=S^{3} \times S^{1}$, with a foliation \mathcal{F} generated by the trivial fibres of S^{1}, and a foliation \mathcal{F}^{\prime} with whose leaves are the S^{1} fibres of the Hopf fibration $S^{3} \rightarrow S^{2}$. Thus $M=\mathcal{M} / \mathcal{F}^{\prime}=S^{2} \times S^{1}$ and $M^{\prime}=S^{3}$. Let $\partial_{\theta}, \partial_{\theta^{\prime}}$ generate $\mathcal{F}, \mathcal{F}^{\prime}$ respectively.
Let $\mathcal{E}=T \mathcal{M} \oplus T^{*} \mathcal{M}$. To choose $\Phi \in \operatorname{Iso}(\mathcal{E})$, let θ, θ^{\prime} be connections on $\mathcal{M} \rightarrow M^{\prime}$ and $\mathcal{M} \rightarrow M$ respectively. Let $B=\theta \wedge \theta^{\prime} \in \operatorname{Hom}\left(T P, T^{*} P\right)$. Then

$$
\Phi(X+\xi)=X+B(X)+\xi
$$

Consider the element $w \partial_{\theta}+p \theta \in T M \oplus T^{*} M, w, p \in \mathbb{R}$. The relation R is then given by

$$
R=\left\{\left(w \partial_{\theta}+p \theta, p \partial_{\theta^{\prime}}+w \theta^{\prime}\right): w, p \in \mathbb{R}\right\} \oplus T S^{2} \oplus T^{*} S^{2}
$$

Buscher rules and topology

Take a Riemannian metric g on $M=S^{2} \times S^{1}$, that has $g_{0} \theta \theta$ as the fibre component. Then $V=\operatorname{gr}(g)=\left\{w \partial_{\theta}+w g_{0} \theta\right\} \oplus \operatorname{gr}\left(g_{S^{2}}\right)$.

$$
V^{\prime}=\left\{w g_{0} \partial_{\theta^{\prime}}+w \theta^{\prime}\right\} \oplus \operatorname{gr}\left(g_{S^{2}}\right),
$$

which is the graph of the metric $g^{\prime}=\frac{1}{g_{0}} \theta^{\prime} \theta^{\prime}+g_{S^{2}}$. One can also calculate the topological terms: If $H=\operatorname{vol}_{S^{2}} \wedge \operatorname{vol}_{S^{1}} \in \Omega_{c \mid}^{3}(M)$, then we have, in terms of the full action

Buscher rules and topology

Take a Riemannian metric g on $M=S^{2} \times S^{1}$, that has $g_{0} \theta \theta$ as the fibre component. Then $V=\operatorname{gr}(g)=\left\{w \partial_{\theta}+w g_{0} \theta\right\} \oplus \operatorname{gr}\left(g_{S^{2}}\right)$. Thus, the subbundle V^{\prime} is

$$
V^{\prime}=\left\{w g_{0} \partial_{\theta^{\prime}}+w \theta^{\prime}\right\} \oplus \operatorname{gr}\left(g_{S^{2}}\right),
$$

which is the graph of the metric $g^{\prime}=\frac{1}{g_{0}} \theta^{\prime} \theta^{\prime}+g_{S^{2}}$.
$H=\operatorname{vol}_{S^{2}} \wedge \operatorname{vol}_{S^{1}} \in \Omega_{c \mid}^{3}(M)$, then we have, in terms of the full
action

Buscher rules and topology

Take a Riemannian metric g on $M=S^{2} \times S^{1}$, that has $g_{0} \theta \theta$ as the fibre component. Then $V=\operatorname{gr}(g)=\left\{w \partial_{\theta}+w g_{0} \theta\right\} \oplus \operatorname{gr}\left(g_{S^{2}}\right)$. Thus, the subbundle V^{\prime} is

$$
V^{\prime}=\left\{w g_{0} \partial_{\theta^{\prime}}+w \theta^{\prime}\right\} \oplus \operatorname{gr}\left(g_{S^{2}}\right)
$$

which is the graph of the metric $g^{\prime}=\frac{1}{g_{0}} \theta^{\prime} \theta^{\prime}+g_{S^{2}}$.
One can also calculate the topological terms: If $H=\operatorname{vol}_{S^{2}} \wedge \operatorname{vol}_{S^{1}} \in \Omega_{c l}^{3}(M)$, then we have, in terms of the full action

$$
S_{H}^{S^{2} \times S^{1}}[f]+S_{g}^{S^{2} \times S^{1}}[f] \longleftrightarrow S_{g^{\prime}}^{S^{3}}\left[f^{\prime}\right]
$$

Outlook

(1) Looking at Poisson-Lie T-duality, where fibres \mathcal{F} are possibly non-abelian groups.
(2) Add more structure: divergence (or CA connections), allowing to incorporate the dilaton, generalised Ricci tensors and Ricci flow; generalised complex structures, allowing incorporation of branes.

End

Thanks you for listening! Questions?
References: [1] https://arxiv.org/abs/2308.15147

