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Wess-Zumino functional

Consider maps f from a worldsheet surface Σ to a target space M.
Take (topological) action functional

SH [f ] =
∫

V
f ∗H, H ∈ Ω3

cl(M), ∂V = Σ.

The variation δSH = 0 is given by generalised vectors
X + ξ ∈ Γ(TM ⊕ T ∗M) such that

ιX H = dξ.
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Courant algebroids

The generalised tangent bundle, TM ⊕ T ∗M, can be equipped
with a pairing and a bracket:

⟨X + ξ, Y + η⟩ = ιX η + ιY ξ,

[X + ξ, Y + η]H = [X , Y ] + LX η − ιY dξ + ιY ιX H.

In general, a (exact) Courant algebroid (CA) is a vector bundle
E over M with a pairing and a bracket of sections fitting the
sequence

0 → T ∗M → E → TM → 0. (E ∼= TM ⊕ T ∗M)

One recovers H ∈ Ω3
cl(M) by considering a splitting s : TM → E

and setting

H(X , Y , Z ) = ⟨[s(X ), s(Y )]E , s(Z )⟩E .
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Polyakov term and Isomorphisms

We can also add dynamical data to our sigma model: the Polyakov
functional, for a Riemannian metric g on M is

Sg [f ] =
∫

Σ
∥df ∥2

gdµg .

The data of g can be captured in a generalised metric; a positive
definite subbundle V ⊂ E , i.e. ⟨V , V ⟩ > 0. For example,

V = gr(g) = {X + g(X ) : X ∈ TM} ⊂ TM ⊕ T ∗M

The data of the full action S = SH + Sg is embedded in a CA
equipped with a positive definite subbundle V .
Thus, an isomorphism Φ: E → E ′ covering a diffeomorphism
ϕ : M → M ′ and preserving ⟨, ⟩E , [, ]E and V will yield
Sigma-modles over M and M ′ with the same equations of motion.
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Courant algebroid relations

T-duality is an equivalence of Sigma-models on different target
manifolds M and M ′, though these are not necessarily
diffeomorphic. A CA isomorphisms Φ: E → E ′ must cover a
diffeomorphism, so we seek to generalise the notion of
isomorphism.
Consider the graph gr(Φ) ⊂ E × E ′. One sees that

[Φ·, Φ·]E ′ = Φ([·, ·]E ) ⇐⇒ gr(Φ) is involutive in E × E ′

⟨Φ·, Φ·⟩E ′ = ⟨·, ·⟩E ⇐⇒ gr(Φ) is isotropic in E × E ′

A CA relation R : E 99K E ′ is an isotropic, involutive subbundle of
E × E ′, supported on a submanifold C ⊂ M × M ′.
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Isometry and Composition

To preserve the structure of a generalised metric V ⊂ E , one sees
that V is the +1 eigenbundle of a τ ∈ Aut(E ). If
R : (E , V ) 99K (E ′, V ′), then R is a generalised isometry if

(τ × τ ′)(R) = R.

Contingent on some smoothness conditions, one can compose two
relations R : E 99K E ′, R̃ : E ′ → E ′′

R̃ ◦ R = {(e, e′′) : (e, e′) ∈ R and (e′, e′′) ∈ R̃} ⊂ E × E ′′
,
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T-duality
T-dual spaces M, M ′ may be fibre bundles over a common base B

M = B × S1 M′ = B × S1

/F′/F

B

M = M ×B M′

/F′ /F
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The T-duality relation I

Want to form a CA relation R : E 99K E ′ between CAs E , E ′ over
M and M ′ respectively. Need to know how to form CAs on a
quotient manifold:
M is foliated by F ′. If E is an exact CA over M, then E/F ′ will
not be an exact CA over M = M/F ′.
Take K ′ = TF ′ ⊂ E , then

E = K ′⊥

K ′

/
F ′

is an exact CA over M.
Can form the CA relation Q(K ′), supported on gr(q′),

Q(K ′) = {(e, ♮′(e)) : e ∈ K⊥} ⊂ E × E

where ♮ : K⊥ → E is the quotient map.
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The T-duality relation II

The T-duality relation R : E → E ′ is then the composition

E E

E E ′

Φ

Q(K ′)T Q(K )

R

Theorem (DF, Marotta, Szabo [1])
Let V be a generalised metric on E. (Modulo invariance
conditions) TFAE

1 K⊥ ∩ Φ(K ′) ⊆ K .

2 There exists a unique generalised metric V ′ on E ′ such that R
is a generalised isometry.
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The Hopf fibration and its T-dual

Consider M = S3 × S1, with a foliation F generated by the trivial
fibres of S1, and a foliation F ′ with whose leaves are the S1 fibres
of the Hopf fibration S3 → S2. Thus M = M/F ′ = S2 × S1 and
M ′ = S3. Let ∂θ, ∂θ′ generate F , F ′ respectively.
Let E = TM ⊕ T ∗M. To choose Φ ∈ Iso(E), let θ, θ′ be
connections on M → M ′ and M → M respectively. Let
B = θ ∧ θ′ ∈ Hom(TP, T ∗P). Then

Φ(X + ξ) = X + B(X ) + ξ.

Consider the element w∂θ + pθ ∈ TM ⊕ T ∗M, w , p ∈ R. The
relation R is then given by

R = {(w∂θ + pθ, p∂θ′ + wθ′) : w , p ∈ R} ⊕ TS2 ⊕ T ∗S2.
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Buscher rules and topology

Take a Riemannian metric g on M = S2 × S1, that has g0θθ as
the fibre component. Then V = gr(g) = {w∂θ + wg0θ} ⊕ gr(gS2).
Thus, the subbundle V ′ is

V ′ = {wg0∂θ′ + wθ′} ⊕ gr(gS2),

which is the graph of the metric g ′ = 1
g0

θ′θ′ + gS2 .
One can also calculate the topological terms: If
H = volS2 ∧ volS1 ∈ Ω3

cl(M), then we have, in terms of the full
action

SS2×S1

H [f ] + SS2×S1
g [f ] SS3

g ′ [f ′]
T-duality



Sigma-models and Courant algebroids T-duality and Relations Example Outlook

Buscher rules and topology

Take a Riemannian metric g on M = S2 × S1, that has g0θθ as
the fibre component. Then V = gr(g) = {w∂θ + wg0θ} ⊕ gr(gS2).
Thus, the subbundle V ′ is

V ′ = {wg0∂θ′ + wθ′} ⊕ gr(gS2),

which is the graph of the metric g ′ = 1
g0

θ′θ′ + gS2 .
One can also calculate the topological terms: If
H = volS2 ∧ volS1 ∈ Ω3

cl(M), then we have, in terms of the full
action

SS2×S1

H [f ] + SS2×S1
g [f ] SS3

g ′ [f ′]
T-duality



Sigma-models and Courant algebroids T-duality and Relations Example Outlook

Buscher rules and topology

Take a Riemannian metric g on M = S2 × S1, that has g0θθ as
the fibre component. Then V = gr(g) = {w∂θ + wg0θ} ⊕ gr(gS2).
Thus, the subbundle V ′ is

V ′ = {wg0∂θ′ + wθ′} ⊕ gr(gS2),

which is the graph of the metric g ′ = 1
g0

θ′θ′ + gS2 .
One can also calculate the topological terms: If
H = volS2 ∧ volS1 ∈ Ω3

cl(M), then we have, in terms of the full
action

SS2×S1

H [f ] + SS2×S1
g [f ] SS3

g ′ [f ′]
T-duality



Sigma-models and Courant algebroids T-duality and Relations Example Outlook

Outlook

1 Looking at Poisson-Lie T-duality, where fibres F are possibly
non-abelian groups.

2 Add more structure: divergence (or CA connections), allowing
to incorporate the dilaton, generalised Ricci tensors and Ricci
flow; generalised complex structures, allowing incorporation of
branes.
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End

Thanks you for listening! Questions?
References: [1] https://arxiv.org/abs/2308.15147
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