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Lattice setup

Lattice setup

We consider a Sp(4) gauge theory with 𝑁f = 2 (dynamical) fermions in the fundamental representation and 𝑁as = 3 in the 2-index
antisymmetric one.

We write the Euclidean action, discretised in four dimensions, as the sum of the gauge 𝑆𝑔 and fermion 𝑆 𝑓 actions,

𝑆 ≡ 𝑆𝑔 + 𝑆 𝑓 ,

where
𝑆𝑔 ≡ 𝛽

∑︁
𝑥

∑︁
𝜇<𝜈

(
1 − 1

2𝑁
Re P𝜇𝜈 (𝑥 )

)
,

𝑆 𝑓 ≡ 𝑎4
𝑁f∑︁
𝑗=1

∑︁
𝑥

𝑄
𝑗 (𝑥 )𝐷 (f)

𝑚 𝑄 𝑗 (𝑥 ) + 𝑎4
𝑁as∑︁
𝑗=1

∑︁
𝑥

Ψ
𝑗 (𝑥 )𝐷 (as)

𝑚 Ψ 𝑗 (𝑥 ) ,

We perform simulation by using (rational) hybrid Monte-Carlo simulations (RHMC)

𝑍 =

∫
D𝑈D𝑄D𝑄̄DΨDΨ̄ 𝑒−𝑆 [𝑈,𝑄,𝑄̄,Ψ,Ψ̄]
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Benchmarks for our findings

Comparisons with spectral density findings will be done using technologies
already used in the literature:

Effective mass plateaus to isolate ground states

𝐶 (𝑡 ) = ⟨O (𝑡 ) Ō (0) ⟩ 𝑡→∞−−−→ 𝐾 · 𝑒−𝑀0𝑡 ⇒ 𝑎𝑚eff = − ln
[
𝐶 (𝑡 + 1)
𝐶 (𝑡 )

]
Generalised Eigenvalue Problem (GEVP) to isolate excited states

𝐶 (𝑡2 )𝑣𝑛 (𝑡2 , 𝑡1 ) = 𝜆𝑛 (𝑡2 , 𝑡1 )𝐶 (𝑡1 )𝑣𝑛 (𝑡2 , 𝑡1 ) → 𝜆𝑛 (𝑡2 , 𝑡1 )

where𝐶 (𝑡 ) is a matrix of correlation functions having the same spectrum.
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WHAT is spectral density?

What is spectral density

What is spectral density?

→ At positive Euclidean times 𝑡 ≥ 0 the previous correlator can be rewritten as

𝐶 (𝑡 ) =
∫ ∞

0
𝑑𝐸 𝜌𝐿 (𝐸 )𝑒−𝑡𝐸

and we defined
𝜌𝐿 (𝐸 ) = ⟨0 | O (0) 𝛿 (𝐸 − 𝐻𝐿 ) Ō (0) |0⟩𝐿

Several applications:
Spectroscopy [arXiv:2212.08019].
→ Case study: Sp(4) theory with 𝑁f = 2, 𝑁as = 3 dynamical fermions.

Study of inclusive decay rates [arXiv:2111.12774].
Study of sphaleron rate (and maybe deconfinement?) [arXiv:2309.13327].
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WHAT is spectral density?

Spectral density extraction

To extract 𝜌𝐿 (𝐸 ) from 𝐶 (𝑡 ):
Having a finite volume Hamiltonian 𝐻𝐿 , we will have

𝜌𝐿 (𝐸 ) =
∑︁
𝑛

𝑤𝑛 (𝐿) 𝛿 (𝐸 − 𝐸𝑛 (𝐿) )

which is mostly lost in the continuum limit, where above the multi-particle threshold the spectral density becomes continuous.

→ We smear the spectral densities using a smearing kernel Δ𝜎 (𝐸, 𝜔)

𝜌̂𝜎 (𝜔) =
∫ ∞

0
𝑑𝐸 Δ𝜎 (𝐸, 𝜔)𝜌𝐿 (𝐸 )

We need to perform an inverse Laplace-transform which is ill-posed.
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WHAT is spectral density?

Ill-posed problem

The problem is ill-posed. This can be seen by
expanding

Δ̄𝜎 (𝐸, 𝜔) =
𝑡max∑︁
𝑡=0

𝑔𝑡 (𝜔)𝑒−(𝑡+1)𝐸

(therefore

𝜌̂(𝜔) =
𝑡max∑︁
𝑡=0

𝑔𝑡 (𝜔)𝐶 (𝑡 + 1)

) and finding the coefficients 𝑔𝑡 (𝜔) by minimizing

𝐴[ ®𝑔] =
∫ ∞

0
𝑑𝐸 |Δ𝜎 (𝐸, 𝜔) − Δ̄𝜎 (𝐸, 𝜔) |2

Therefore, if 𝐶 (𝑡 ) = 𝐶̄ (𝑡 ) + 𝛿 (𝐶 (𝑡 ) ) and the
uncertainty on the spectral density 𝛿 (𝐶 (𝑡 ) ) × 𝑔𝑡 (𝐸 )
will be uncontrolled.

[arXiv:1903.06476]
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HOW do we study spectral density?

Spectral density algorithm

We will reconstruct spectral densities using a modified Backus-Gilbert method [1].

To determine the vector of coefficients ®𝑔 = ®𝑔 (𝐸 ) for the spectral reconstruction, we minimize the functional

𝑊 [ ®𝑔] = 𝐴[ ®𝑔]
𝐴[0] + 𝜆 𝐵[ ®𝑔]

𝐵norm
, 𝜆 ∈ (0,∞)

where 𝐵norm = 𝐶2 (1)/𝐸2 (lattice spacing 𝑎 = 1, for convenience)

𝐴[ ®𝑔] =
∫ ∞

0
𝑑𝐸 𝑒𝛼𝐸 |Δ̄𝜎 (𝐸, 𝜔) − Δ𝜎 (𝐸, 𝜔) |2

𝐵[ ®𝑔] =
∑︁
𝜏, 𝜏

′
𝑔𝜏 Cov

𝜏𝜏
′ [𝐶 ] 𝑔

𝜏
′

For each energy we reconstruct the spectral density
𝜌̂(𝐸 ) =

∑︁
𝑡

𝑔𝑡 (𝐸 ) 𝐶 (𝑡 )
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HOW do we study spectral density?

Smearing kernels
In order to check the quality of reconstruction, we also
check that at each energy the reconstruction of the ker-
nels we use:

Δ̄𝜎 (𝐸, 𝜔) =
𝑡max∑︁
𝑡=0

𝑔𝑡 (𝜔)𝑒−(𝑡+1)𝐸

We use as target kernels:

Gaussian kernel:

Δ̄
(1)
𝜎 (𝐸, 𝜔) = 𝑒−

(𝐸−𝜔)2
2𝜎2 /𝑍 (𝜔)

with 𝑍 (𝜔) =
∫ ∞

0 𝑑𝐸 𝑒
−(𝐸−𝜔)2

2𝜎2 .
Cauchy kernel:

Δ̄
(2)
𝜎 (𝐸, 𝜔) = 𝜎[

(𝐸 − 𝜔)2 + 𝜎2
]
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HOW do we study spectral density?

Spectral density reconstruction systematic errors

The first component of systematic error for each of these values
𝜌̂(𝐸 ) , will be estimated as

𝜎1, sys (𝜌̂(𝐸 ) ) = |𝜌̂𝜆∗ (𝐸 ) − 𝜌̂𝜆∗/10 (𝐸 ) |

where 𝜆∗ was found through the plateaus procedure described
above.

The second component of systematic error for each of the
values 𝜌̂(𝐸 ) , will be estimated as

𝜎2, sys (𝜌̂(𝐸 ) ) = |𝜌̂𝜆∗ ,𝛼2 (𝐸 ) − 𝜌̂𝜆∗ ,𝛼1 (𝐸 ) |
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HOW do we study spectral density?

Spectral density fits

Given this procedure, we can perform fits of the spectral density, minimizing the functional [2]

𝜒2 =
∑︁

𝐸, 𝐸
′

(
𝑓
(𝑘)
𝜎 (𝐸 ) − 𝜌̂𝜎 (𝐸 )

)
Cov−1

𝐸 𝐸
′ [𝜌̂𝜎 ]

(
𝑓
(𝑘)
𝜎 (𝐸′ ) − 𝜌̂𝜎 (𝐸′ )

)
where we fit the spectral densities as:

Sum of Gaussians

𝑓
(𝑘)
𝜎 (𝐸 ) =

𝑘∑︁
𝑛=1

A𝑛 Δ
(1)
𝜎 (𝐸 − 𝐸𝑛 )

Sum of Cauchy functions

𝑓
(𝑘)
𝜎 (𝐸 ) =

𝑘∑︁
𝑛=1

A𝑛 Δ
(2)
𝜎 (𝐸 − 𝐸𝑛 )

(remember that 𝜌𝐿 (𝐸 ) = ∑
𝑛 𝑤𝑛 (𝐿) 𝛿 (𝐸 − 𝐸𝑛 (𝐿) ) and 𝜌̂𝜎 (𝜔) =

∫ ∞
0 𝑑𝐸 Δ𝜎 (𝐸, 𝜔)𝜌(𝐸 ))
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HOW do we study spectral density?

Energy levels fitting systematic errors

We perform the fit both with the Gaussian kernel and Cauchy
kernel

𝜎1, sys (𝑎𝐸𝑛 ) = |𝑎𝐸𝑛, Gauss − 𝑎𝐸𝑛, Cauchy |

and we evaluate the difference between the same energy state,
determined using the two kernels.

Difference between the two and three Gaussian (or Cauchy)
functions

𝜎2, sys (𝑎𝐸𝑛 ) = |𝑎𝐸𝑛, 𝑘=3 − 𝑎𝐸𝑛, 𝑘=2 |
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Numerical results

Numerical results: comparison with GEVPs

We compare the GEVPs from
several channels to check the
excited states.

Channel Interpolating
operator

PS (F/AS) 𝐹̄𝑖𝛾5𝐹
𝑗

V (F/AS) 𝐹̄𝑖𝛾𝜇𝐹
𝑗

T (F/AS) 𝐹̄𝑖𝛾0𝛾𝜇𝐹
𝑗

AV (F/AS) 𝐹̄𝑖𝛾5𝛾𝜇𝐹
𝑗

AT (F/AS) 𝐹̄𝑖𝛾5𝛾0𝛾𝜇𝐹
𝑗

S (F/AS) 𝐹̄𝑖𝐹 𝑗

where 𝑖, 𝑗 are flavour indices
and 𝐹 = 𝑄,Ψ.

They come out to be compatible
within statistical uncertainty.
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→ Example:

Channel 𝑎𝐸0 (Gauss) 𝑎𝐸1 (Gauss) 𝑎𝐸0 (Cauchy) 𝑎𝐸1 (Cauchy) 𝑎𝐸0 (GEVP) 𝑎𝐸1 (GEVP)
PS (AS) 0.5998(32) 0.881(21) 0.5998(35) 0.864(31) 0.60161(91) 0.891(19)
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To be done

We can increase values of 𝑁𝑡 .

→ Increase basis to expand Kernel and spectral
density, more accurate reconstruction.

Δ̄𝜎 (𝐸.𝜔) =
𝑡max∑︁
𝑡=0

𝑔𝑡 (𝜔)𝑒−(𝑡+1)𝐸

(where 𝑡max < 𝑇).

Apply spectral density spectroscopy to lattice
QCD.

Apply a variational method to spectral densities.
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Backup slides: 𝑆𝑝(2𝑁) Lie group

We denote as 𝑆𝑝 (2𝑁 ) the subgroup of 𝑆𝑈 (2𝑁 ) preserving the norm induced by the antisymmetric matrix Ω,

Ω =

(
0 1𝑁

−1𝑁 0

)
,

where 1𝑁 is the 𝑁 × 𝑁 identity matrix. This definition can be converted into a constraint on the group element𝑈

𝑈Ω𝑈𝑇 = Ω .

Due to unitarity, the previous condition can be also written as

𝑈Ω = Ω𝑈∗ ,

which implies the following block structure

𝑈 =

(
𝐴 𝐵

−𝐵∗ 𝐴∗

)
,
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Backup slides: Wilson-Dirac operators on the lattice

The massive Wilson-Dirac operators are defined as

𝐷
(f)
𝑚 𝑄 𝑗 (𝑥 ) ≡ (4/𝑎 +𝑚f

0 )𝑄
𝑗 (𝑥 )

− 1
2𝑎

∑︁
𝜇

{
(1 − 𝛾𝜇 )𝑈 (f)

𝜇 (𝑥 )𝑄 𝑗 (𝑥 + 𝜇̂) + (1 + 𝛾𝜇 )𝑈 (f) , †
𝜇 (𝑥 − 𝜇̂)𝑄 𝑗 (𝑥 − 𝜇̂)

}
,

and

𝐷
(as)
𝑚 Ψ 𝑗 (𝑥 ) ≡ (4/𝑎 +𝑚as

0 )Ψ 𝑗 (𝑥 )

− 1
2𝑎

∑︁
𝜇

{
(1 − 𝛾𝜇 )𝑈 (as)

𝜇 (𝑥 )Ψ 𝑗 (𝑥 + 𝜇̂) + (1 + 𝛾𝜇 )𝑈 (as) , †
𝜇 (𝑥 − 𝜇̂)Ψ 𝑗 (𝑥 − 𝜇̂)

}
,
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Backup slides: antisymmetric links definition

The link variables𝑈 (as)
𝜇 (𝑥 ) are defined as follows:

𝑈
(as)
𝜇, (𝑎𝑏) (𝑐𝑑) =

(
𝑒 (𝑎𝑏) 𝑇𝑈 (f)

𝜇 𝑒 (𝑐𝑑)𝑈 (f) T
𝜇

)
,

where 𝑒 (𝑎𝑏) are the elements of an orthonormal basis in the (𝑁 (2𝑁 − 1) − 1)-dimensional space of 2𝑁 × 2𝑁 antisymmetric and
Ω-traceless matrices, and the multi-indices (𝑎𝑏) run over the values 1 ≤ 𝑎 < 𝑏 ≤ 2𝑁 .
The entry 𝑖 𝑗 of each element of the basis is defined as follows. For 𝑏 ≠ 𝑁 + 𝑎,

𝑒
(𝑎𝑏)
𝑖 𝑗

≡ 1
√

2
(
𝛿𝑎 𝑗 𝛿𝑏𝑖 − 𝛿𝑎𝑖 𝛿𝑏 𝑗

)
,

while for 𝑏 = 𝑁 + 𝑎 and 2 ≤ 𝑎 ≤ 𝑁 ,

𝑒
(𝑎𝑏)
𝑖,𝑖+𝑁 = −𝑒 (𝑎𝑏)

𝑖+𝑁,𝑖
≡


1√
2𝑎 (𝑎−1)

, for 𝑖 < 𝑎 ,
1−𝑎√

2𝑎 (𝑎−1)
, for 𝑖 = 𝑎 .
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Backup slides: RHMC, rational hybrid Monte-Carlo

The (R)HMC algorithms generate a Markov chain of gauge configurations distributed as required by the lattice action.

Bosonic degrees of freedom 𝜙 and 𝜙†, known as pseudofermions, are introduced replacing a generic number 𝑛 𝑓 of fermions.

Powers of the determinant of the hermitian Dirac operator, 𝑄𝑅
𝑚 = 𝛾5𝐷

𝑅
𝑚, in representation 𝑅 can then be expressed as

(det𝐷𝑅
𝑚 )𝑛 𝑓 = (det𝑄𝑅

𝑚 )𝑛 𝑓 =

∫
D𝜙D𝜙†𝑒−𝑎4 ∑

𝑥 𝜙† (𝑥) (𝑄2
𝑚 )−𝑛 𝑓 /2

𝜙 (𝑥) ,

For odd values of 𝑛 𝑓 , the rational approximation is used to compute odd powers of the determinant above, resulting in the RHMC.
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Backup slides: RHMC, rational hybrid Monte-Carlo (2)

The fictitious hamiltonian is
𝐻 =

1
2

∑︁
𝑥,𝜇,𝑎

𝜋𝑎 (𝑥, 𝜇) 𝜋𝑎 (𝑥, 𝜇) + 𝐻𝑔 + 𝐻 𝑓 ,

The molecular dynamics (MD) evolution in fictitious time 𝜏 is dictated by

d𝑈𝜇 (𝑥 )
d𝜏

= 𝜋 (𝑥, 𝜇)𝑈𝜇 (𝑥 ) ,
d𝜋 (𝑥, 𝜇)

d𝜏
= 𝐹 (𝑥, 𝜇) ,

where 𝐹 (𝑥, 𝜇) , known as the HMC force.

Numerical integration of the MD equations thus leads to a new configuration of the gauge field, which is then accepted or rejected
according to a Metropolis test.
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Backup slides: formulas for spectral density reconstruction

A0 mp and A0E mp

𝐴0 (𝜔) ≡ 𝐴[0] (𝜔) =
∫ ∞

𝐸0
𝑑𝐸 𝑒𝛼𝐸Δ𝜎 (𝐸, 𝜔)2 =

𝑒
𝛼2𝜎2

4 +𝛼𝜔

(
erf

(
𝛼𝜎2+2𝜔−2𝑒0

2𝜎

)
+ 1

)
4
√
𝜋𝜎

ft mp

𝑓𝑡 (𝜔) =
∫ ∞

𝐸0
𝑑𝐸 Δ𝜎 (𝐸, 𝜔) 𝑏𝑇 (𝑡 , 𝐸 ) 𝑒𝛼𝐸

=
1
2
{ 𝑒

1
2 (𝛼+𝑡−𝑇 )

(
𝜎2 (𝛼+𝑡−𝑇 )+2𝜔

) (
erf

(
𝜎2 (𝛼 + 𝑡 − 𝑇 ) + 𝜔 − 𝑒0√

2𝜎

)
+ 1

)
+ 𝑒

1
2 (𝛼−𝑡 )

(
𝜎2 (𝛼−𝑡 )+2𝜔

)
erfc

(
𝜎2 (𝑡 − 𝛼) − 𝜔 + 𝑒0√

2𝜎

)
}
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Backup slides: formulas for spectral density reconstruction (2)

In the code, we express 𝑓𝑡 (𝜔) by means of the following function called generalised ft:

𝑓𝑡 (𝜔) = 𝑒
1
2 (𝛼−𝑡 )

(
𝜎2 (𝛼−𝑡 )+2𝜔

)
erfc

(
𝜎2 (𝑡 − 𝛼) − 𝜔 + 𝑒0√

2𝜎

)
,

so that we can write 𝑓𝑡 (𝜔) = 𝑓𝑡 (𝜔)+ 𝑓𝑇−𝑡 (𝜔)
2

Smatrix mp

S𝑡𝑟 =
𝑒𝐸0 (𝛼−𝑟−𝑡−2)

𝑡 + 𝑟 + 2 − 𝛼 + 𝑒𝐸0 (𝛼+𝑟+𝑡+2−2𝑇 )

2𝑇 − 𝑡 − 𝑟 − 2 − 𝛼 + 𝑒
𝐸0 (𝛼+𝑟−𝑡−𝑇 )

𝑇 + 𝑡 − 𝑟 − 𝛼 + 𝑒
𝐸0 (𝛼−𝑟+𝑡−𝑇 )

𝑇 − 𝑡 + 𝑟 − 𝛼
We also have

B𝑡𝑟 = Cov𝑡𝑟 .

𝐵norm = 𝐶 (1) can be used to make 𝐵[𝑔] dimensionless.
The minimisation then amounts to solve the following linear system

®𝑔 =

(
S + 𝜆 𝐴0 (𝜔)

(1 − 𝜆) (𝜔) B
)−1

®f .
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Backup slides: Wuppertal and APE smearings formulas

Wuppertal smearing acts on fermion fields increasing the overlap of ground state.

𝑞 (𝑛+1) (𝑥 ) = 1
1 + 2𝑑𝜀

𝑞 (𝑛) (𝑥 ) + 𝜀
±𝑑∑︁
𝜇=±1

𝑈𝜇 (𝑥 )𝑞 (𝑛) (𝑥 + 𝜇̂)


APE smearing averages out UV fluctuations of the gauge fields.

𝑈
(𝑛+1)
𝜇 (𝑥 ) = 𝑃

{
(1 − 𝛼)𝑈 (𝑛)

𝜇 (𝑥 ) + 𝛼
6
𝑆
(𝑛)
𝜇 (𝑥 )

}
, 𝑆𝜇 (𝑥 ) =

∑︁
±𝜈≠𝜇

𝑈𝜈 (𝑥 )𝑈𝜇 (𝑥 + 𝜈̂)𝑈†
𝜈 (𝑥 + 𝜇̂)
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Backup slides: varying Wuppertal and APE smearings

Mean amplitudes ratios
𝜖 APE 𝜖

Wuppertal
f 𝑁source 𝑁sink A2/A1

0.4 0.18 80 20 1.32(19)
0.4 0.18 80 40 1.15(11)
0.4 0.18 80 80 0.75(15)
0.4 0.18 40 80 1.24(18)
0.4 0.18 20 80 1.80(28)
0.4 0.24 90 30 1.01(20)
0.4 0.4 170 170 0.63(11)
0.4 0.05 20 20 2.28(27)
0.0 0.18 80 40 1.27(11)

Table: Amplitudes ratio between the two-gaussian fits, for different levels of sink and source Wuppertal smearing and APE smearing.
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Backup slides: Improving the reconstruction

We can increase values of 𝑁𝑡 .

→ Increase basis to expand Kernel and spectral
density, more accurate reconstruction.

Δ̄𝜎 (𝐸.𝜔) =
𝑡max∑︁
𝑡=0

𝑔𝑡 (𝜔)𝑒−(𝑡+1)𝐸

(where 𝑡max < 𝑇).
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Backup slides: Benchmarks for our findings

Comparisons with spectral density findings will be done using technologies
already used in the literature:

Effective mass plateaus to isolate ground states

𝐶 (𝑡 ) = ⟨O (𝑡 ) Ō (0) ⟩ 𝑡→∞−−−→ 𝐾 · 𝑒−𝑀0𝑡 ⇒ 𝑎𝑚eff = − ln
[
𝐶 (𝑡 + 1)
𝐶 (𝑡 )

]
Generalised Eigenvalue Problem (GEVP) to isolate excited states

𝐶 (𝑡2 )𝑣𝑛 (𝑡2 , 𝑡1 ) = 𝜆𝑛 (𝑡2 , 𝑡1 )𝐶 (𝑡1 )𝑣𝑛 (𝑡2 , 𝑡1 ) → 𝜆𝑛 (𝑡2 , 𝑡1 )

where𝐶 (𝑡 ) is a matrix of correlation functions having the same spectrum.

We will also use additional tools:

Wuppertal smearing acts on fermion fields increasing the overlap of ground state.

APE smearing averages out UV fluctuations of the gauge fields.
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Backup slides: using Wuppertal and APE smearings

We use APE [3] and Wuppertal smearing [4] to
increase the overlap between the operators and the
ground state

𝐶 (𝑡 ) =
∑︁
𝑛

⟨0 | O (0) |𝑛⟩⟨𝑛 | Ō (0) |0⟩
2𝐸𝑛

𝑒−𝑡𝐸

Similarly we get

𝜌̂𝜎 (𝐸 ) =
∑︁
𝑛

⟨0 | O (0) |𝑛⟩⟨𝑛 | Ō (0) |0⟩
2𝐸𝑛

×Δ𝜎 (𝐸 − 𝐸𝑛 (𝐿) )

As we increase the overlap, the amplitude of the second
gaussian decreases → longer plateaus.
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