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Lattice Field Theory simulation

Figure: One time slice of 4D U(1) gauge theory
configuration.

Figure: 2D Ising model configuration.

The distribution of particles across the
space and time are described by
Boltzmann distribution.

p(ψ, ψ̄,A) =
1

Z
e−S[ψ,ψ̄,A] (1)

The configurations, which are snapshots
of the discretized space-time with fields,
are sampled from the Boltzmann
distribution using Monte Carlo algorithm.

Then the expectation value of a observable
is calculated by averaging over the value
of the observable in each configuration.

⟨O⟩ ≃
1

N

N∑
i=1

Oi (2)
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Some limitations of Monte Carlo simulation

Critical slowing down

Computational cost diverges near the
critical point of the system due to the
diverging correlation length.
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Figure: Autocorrelation increases near the
phase transition. Example from 2D Ising
model.

Nindependent =
N

2τint
(3)

Sign problem

Sampling efficiency worsens when the
probability distribution is complex.
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Figure: Real part of the complex probability
density function.

The probability distribution is highly os-

cillatory.
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Generative machine learning models

Generative machine learning model is a machine learning model that maps between
input distribution and the target distribution.

Markov chain can be replaced by a single neural network and can be run in parallel,
accelerating the sampling process.
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Examples of generative machine learning models

Figure: Chat-GPT, GAN, Normalizing flow. arXiv:2006.11239, arXiv:2101.08176
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Typical structure of neural network

Output y⃗ of the network

y⃗ = f (Wx⃗), fitting parameters W

Minimize the objective function

L = L(ŷ , y⃗) → find optimal W

List of hyperparameters

1 Number of layers/width of each
layer ⇒ Volume of your model

2 Activation function “f ”
(ReLU, tanh, sigmoid, etc)

3 Objective function “L”
(MSE, cross entropy, etc)

4 Optimization algorithm
(SGD, Adam, Newton-Rapson,
Runge-Kutta, etc)
...

ML ⇒ Highly non-linear optimization problem
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Requirements from Physics/ML

However, physical systems require some properties from sampling
algorithms that have to be satisfied to be considered reliable.

Physics Nat. Rev. Phys, 5, 526-535 Machine Learning

Respect symmetries

Exactness

Scalability

Tractable likelihood

Type of activation function
arXiv:2305.02334

Choice of structure
arXiv:2309.10688

Volume of the model
arXiv:2209.04882

Initialization of weights
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Restricted Boltzmann Machine (RBM)

Figure: Structure of a Restricted Boltzmann Machine.

Restricted Boltzmann Machine
(RBM) is a generative machine
learning model consisting of two
layers of nodes.

The probability distribution of the
output layer is given by
combination of training parameters.

p(ϕ) =
1

Z
e−

1
2ϕ

TKϕ (4)

where K = µ211− σ2WW T is
called RBM kernel.
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Training dynamics

Model parameters are updated by gradient assent to maximize the log-likelihood
function. For given M number of data from the target distribution, the log-likelihood
function is given by

L(ϕ|W ) =
1

M

M∑
d

log p(ϕ(d);W ), W
(t+1)
ia = W

(t)
ia + η

∂L
∂Wia

(5)

The gradient of the log-likelihood function is given by

∂L
∂Wia

= σ2
h

∑
j

[⟨ϕiϕj⟩target − ⟨ϕiϕj⟩model]Waj (6)

= σ2
h

∑
j

[
K−1

target,ij − K−1
ij

]
Waj (7)

where, K−1
target,ij = ⟨ϕiϕj⟩target ≡ 1

M

∑M
d ϕ

(d)
i ϕ

(d)
j and K−1

ij = ⟨ϕiϕj⟩model are the two
point correlation function of the training dataset and RBM respectively.
A. Decelle and C. Furtlehner, arXiv:2011.11307, (2021)

G. Hinton, UTML TR 2010-003 lecture note, (2010)
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Numerical results: Scalar field theory

Target distribution: p(ϕ) =
1

Z
e−

1
2
ϕ(∂2−m2)ϕ
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λα = µ211− σ2
hξ

2
α : Eigenvalue of K

κα = p2 +m2 = (2 +m2) + 2 cos

(
2π

N
α

)
: Eigenvalue of Ktarget
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Restricted Boltzmann Machine (RBM)

Figure: Structure of a Restricted Boltzmann Machine.

The probability distribution of
the visible layer is given by

p(ϕ) =
1

Z
e−

1
2
ϕTKϕ

where K = µ211− σ2WW T .

What does it mean to have larger/smaller µ2?

K > 0 model to converge ⇒ sets maximum of W 2

What does it mean to have a larger/smaller number of hidden nodes?

Wij ⇒ Rectangular matrix of size (Nv ,Nh)
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Training dynamics in SVD basis

We can rewrite the gradient equation in terms of singular values of the coupling matrix
W .

W = UΞV T , UUT = 11, VV T = 11 (8)

Ξ = diag(ξ1, ξ2, · · · ) : singular values of W ,

Then,

K = µ211− σ2
hUΞΞTUT ≡ UDKU

T , Ktarget = OϕDϕO
T
ϕ (9)

where

DK = diag(µ2 − σ2
hξ

2
1 , µ

2 − σ2
hξ

2
2 , · · · ), Dϕ = diag(κ1, κ2, · · · )

∂L
∂W

= Uσ2
h

[
UTOϕD

−1
ϕ OT

ϕU − D−1
K

]
ΞV T

From the gradient equation written in the singular value basis, we can find some
interesting properties of training the RBM.
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UV regularization by RBM mass parameter µ2

We can rewrite the gradient equation in terms of singular values of the coupling
matrix W .

∂L
∂ξα

= σ2
h

[
1

κα
− 1

µ2 − σ2
hξ

2
α

]
ξα (10)

ξα: Singular value of W κα: Eigenvalue of Ktarget

There are two fixed points of ξα

σ2
hξ

2
α =

{
µ2 − κα · · · µ2 > κα

0 · · · µ2 ≤ κα
⇒ λα =

{
µ2 − σ2

hξ
2
α ∼ κα

µ2 (11)

The fixed point equation indicates that the singular value ξα of the
coupling matrix W dies off, if the corresponding eigenmode κα of the
target kernel is larger than the RBM mass parameter µ2.
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Numerical results: Scalar field theory
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λα is a eigenvalue of the RBM kernel K.

λα = µ211− σ2
hξ

2
α (12)

The eigenvalues of the RBM kernel is trained to match the eigenvalues of the target
kernel Kϕ, but the high momentum modes larger than the RBM mass parameter are cut
off.
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UV regularization by reducing degrees of freedom

In case of Nh < Nv , the number of degrees of freedom of the RBM is restricted by the
number of hidden nodes.

rank(WW T ) ≤ min(Nv ,Nh) ⇒ rank(K) ≤ min(Nv ,Nh) (13)

eig(WW T ) = (ξ21 , ξ
2
2 , · · · , ξ2Nh︸ ︷︷ ︸

Nh

, 0, · · · , 0︸ ︷︷ ︸
Nv−Nh

) (14)

Then Nv − Nh number of modes of the RBM kernel are fixed to the RBM mass
parameter µ2 and the model possesses Nh degrees of fredom.

λα =

{
µ2 − σ2

hξ
2
α · · · α ≤ Nh

µ2 · · · α > Nh
(15)

By removing the degrees of freedom in the RBM, we are keeping Nh number of
lowest modes of the target kernel.
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Numerical results: Scalar field theory
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Figure: High momentum cut-off by removing degrees of freedom

The Nh number of modes are trained to match the eigenvalues of the target kernel from
the lowest value.
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Numerical results: MNIST data

Eigenvalue spectrum of the correlation
matrix ⟨ϕiϕj⟩MNIST contains modes that are
very close to 0.
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Figure: Eigenvalue spectrum of the MNIST correlation
matrix ⟨ϕiϕj ⟩MNIST.

KMNIST = ⟨ϕiϕj⟩−1
MNIST (16)

Figure: The MNIST dataset.

The correlation matrix of the
dataset contains 784 eigenvalues
and some of the eigenvalues are
very small.

This indicates that the MNIST
dataset is a UV divergent dataset.
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Regeneration quality: MNIST

As more modes are cut off, the regeneration quality of the RBM decreases.

(a) Nh = 784 (b) Nh = 225 (c) Nh = 64

(d) Nh = 36 (e) Nh = 16 (f) Nh = 4

Figure: Quality of the regenerated image with different numbers of hidden nodes.
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Langevin dynamics and Fokker Planck equation

In continuous time limit η → 0, we can describe the training dynamics of
the machine learning using Langevin equation.

∂tξ
2 = ∂ξ2L+ r , ∂ξ2L =

[
1

κ
− 1

µ2 − ξ2

]
ξ2 (17)

where r is a Gaussian random noise. The corresponding Fokker-Planck
equation is

∂tP(ξ
2, t) = ∂ξ2

[
η∂ξ2 − ∂ξ2L

]
P(ξ2, t) (18)

Solving the equation, we can obtain leading order behavior of the
relaxation time.

P(ξ2, t) ∝ c0|0⟩+
∑
n>0

cn|n⟩e−λnt ⇒ λ1 ∼
µ2 − κ

κ2
(19)
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Relaxation time and learning rate

Figure: The relaxation of ξ2 towards the equilibrium distribution. (Left) MNIST data (Right) Scalar field
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Phase transitions in the Machine learning models

Ferromagnetic phase transition in
Binary models

Figure: Phase diagram of Binary RBMs, Decelle et al.
(2018)

Grokking phase transition

Figure: Grokking transition in overparameterized neural
networks, Power et al. (2022)
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Conclusion

Explaining the dynamics of the machine learning models using the
language of physics is beneficial to both ML and physics.

Using tools of physics, we can solve explanability and scalability of the
machine learning models.

Machine learning models contain rich physical structures such as
non-equilibrium stochastic process and phase transitions.

It is multi-disciplinary research area, so any collaboration is welcome!
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Thank you!
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Appendix

Gibbs sampling and information retrieval

Step 1 A sample from the target distribution is passed to the visible layer.

Step 2 The value of the hidden layer is sampled from the conditional probability distribution
with the given value of the visible layer.

p(h|ϕ) =
p(ϕ, h)∫
Dh p(ϕ, h)

=
qhe

ϕTWh∫
Dh qheϕ

TWh

Step 3 The value of visible layer is sampled from the conditional probability distribution with the
given value of the hidden layer.

p(ϕ|h) =
p(ϕ, h)∫
Dϕ p(ϕ, h)

=
qv eϕ

TWh∫
Dϕ qv eϕ

TWh

Step 4 The samples retrieved from the model follows the probability distribution of the visible
layer.

p(ϕ) =

∫
Dh p(ϕ, h) (20)
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Appendix

Parameterization of the Gaussian RBM

Gaussian RBM is a RBM with Gaussian distribution as a prior for both visible and
hidden layer.

qv (ϕ) = exp

(
−µ2

2
ϕTϕ

)
, qh(h) = exp

(
− 1

2σ2
h

(h − η)T (h − η)

)
(21)

With Gaussian prior of above parameterization, the joint probability distribution of the
model is given by

p(ϕ, h) =
1

Z
exp

(
ϕTWh − µ2

2
ϕTϕ− 1

2σ2
h

(h − η)T (h − η)

)
(22)

The conditional probability is given by

p(ϕ|h) =
∏
i

N

(
ϕi ;

1

µ2

∑
a

Wiaha,
1

µ2

)
, p(h|ϕ) =

∏
a

N

(
ha; ηa + σ2

h

∑
i

ϕiWia, σ
2
h

)
(23)
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Gaussian RBM as a Scalar Field RBM

Integrating out the hidden layer, we obtain the probability distribution of the
visible layer, which is a probability distribution of the retrieved samples.

p(ϕ) =

∫
Dh p(ϕ, h) =

1

Z
exp

(
−1

2
ϕTKϕ+ ϕT J

)
(24)

with RBM kernel K , symmetry breaking external source J, and the partition
function Z .

K ≡ µ211− σ2
hWW T , J = W η, Z =

∫
Dϕ exp

(
−1

2
ϕTKϕ+ ϕT J

)
(25)

From the form of the probability distribution of the visible layer, we can find that
the Gaussian RBM can be seen as a free scalar field theory with all to all
coupling.
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Appendix

Regeneration quality: Scalar field theory
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Figure: Regenerated action density with different µ2.
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Figure: Regenerated action density with different number of hidden nodes.
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Appendix

Unsupervised learning

From the gradient equation,

∂L
∂Wia

= σ2
h

∑
j

[⟨ϕiϕj⟩target − ⟨ϕiϕj⟩model]Waj (26)

= σ2
h

∑
j

[
K−1

target,ij − K−1
ij

]
Waj (27)

Predefined data is only needen when estimating the two-point correlation function of
the target distribution.

This can be avoided if the two-point correlation function of the target distribution is
analyticaly obtainable.

For example, for 1D free scalar field theory with periodic boundary condition,

⟨ϕiϕj⟩target = K−1
ϕ,ij (28)

with,

Kϕ,ij = (m2 + 2)δij − δi,j+1 − δi,j−1 (29)
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Appendix

Rotational part of the gradient

The orthogonal matrix that diagonalizes the target kernel and the model kernel is not
necessarily alligned (or orthogonal) to each other before the training.

Kϕ = OϕDϕO
T
ϕ , K = UDKU

T (30)

with

OϕO
T
ϕ = 11, UUT = 11 (31)

are the orthogonal matrices that diagonalize the target kernel and the model kernel. The
full gradeint equation considering the rotation is,

σ2
h

[
K−1
ϕ − K−1

]
= Uσ2

h

[
UTOϕD

−1
ϕ OT

ϕ − D−1
K

]
ΞV T (32)

where Ξ is a rectangular singular value matrix and V is the right singular matrix of W .

W = UΞV T (33)
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Appendix

Nv = 2 Nh = 1 case

In case of Nv = 2 and Nh = 1, the training equation is directly traiceable.

The orthogonal matrix Oϕ and U are 2× 2 rotation matrices with angle θϕ and θU
respectively.

The combination OT
ϕU is a rotation over an angle ∆θ = θU − θϕ.

Training equation for the angle ∆θ is written as,

d∆θ

dt
= σ2

h

(
1

κ2
− 1

κ1

)
cos∆θ sin∆θ (34)

which gives two limits of ∆θ,

κ2 > κ1 ⇔ ρ̃ < 0 ⇔ lim
t→∞

∆θ(t) = 0, ⇔ ξ1 → κ1, ξ2 = 0 (35)

κ2 < κ1 ⇔ ρ̃ > 0 ⇔ lim
t→∞

∆θ(t) =
π

2
⇔ ξ1 → κ2, ξ2 = 0. (36)
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