Towards interpretable and scalable machine learning for lattice field theory

Chanju Park, Gert Aarts, Biagio Lucini

c.j.park@swansea.ac.uk

Department of Physics, Swansea University

YTF, Durham, 14 Dec 2023

Lattice Field Theory simulation

Figure: One time slice of 4D U(1) gauge theory configuration.

Figure: 2D Ising model configuration.

• The distribution of particles across the space and time are described by **Boltzmann distribution**.

$$p(\psi,\bar{\psi},A) = \frac{1}{Z}e^{-S[\psi,\bar{\psi},A]} \qquad (1)$$

- The configurations, which are snapshots of the discretized space-time with fields, are sampled from the Boltzmann distribution using Monte Carlo algorithm.
- Then the expectation value of a observable is calculated by averaging over the value of the observable in each configuration.

$$\langle O \rangle \simeq \frac{1}{N} \sum_{i=1}^{N} O_i$$
 (2)

Some limitations of Monte Carlo simulation

Critical slowing down

Introduction

00000

 Computational cost diverges near the critical point of the system due to the diverging correlation length.

Figure: Autocorrelation increases near the phase transition. Example from 2D Ising model.

$$N_{\rm independent} = \frac{N}{2\tau_{\rm int}}$$
 (3)

Sign problem

RBM as an ultra-violet regulator

Sampling efficiency worsens when the probability distribution is complex.

Figure: Real part of the complex probability density function.

The probability distribution is highly oscillatory.

Generative machine learning models

Generative machine learning model is a machine learning model that maps between input distribution and the target distribution.

Markov chain can be replaced by a single neural network and can be run in parallel, accelerating the sampling process.

CL D L		
Chanju Park (Dep. of Phys.	

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

Examples of generative machine learning models

What is generative machine learning model?

ChatGPT

A generative machine learning model is a type of model that is trained to generate new data that is similar to the training data it was exposed to. In other words, it learns the underlying patterns and structures of the data and can then generate new samples that share those characteristics.

Generative models are often contrasted with discriminative models. Discriminative models, in contrast, are trained to distinguish between different classes or categories in the input data.

There are various types of generative models, and one common approach is using Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs).

- Generative Adversarial Networks (30ANb): CANks: consist of two neural networks, a generative, and a discriminator, that we frained simultaneously through adversarial training. The generator creates new samples, and the discriminator tries to distinguish between real and generated samples. The training process continues will the generator produces samples that are indistinguishable from real data.
- Variational Autoencoders (VAEs): VAEs are a type of autoencoder that learn probabiliset mappin from the input space to a latent space. They generate by sampling from this latent space and then decoding the samples back into data space. VAEs are probabilistic in nature and are trained to generate sam a specific diritivitution.

Figure: Chat-GPT, GAN, Normalizing flow. arXiv:2006.11239, arXiv:2101.08176

イロト (母) (ヨト (ヨト) ヨヨ ののの

Introduction Gaussian RBM RBM as an ultra-violet regulator

Typical structure of neural network

- Output \vec{v} of the network $\vec{y} = f(W\vec{x})$, fitting parameters W
- Minimize the objective function

 $\mathcal{L} = \mathcal{L}(\hat{v}, \vec{v}) \rightarrow \text{find optimal } W$

List of hyperparameters

- 1 Number of layers/width of each layer \Rightarrow Volume of your model
- **2** Activation function "f" (ReLU, tanh, sigmoid, etc)
- **3** Objective function " \mathcal{L} " (MSE, cross entropy, etc)
- Optimization algorithm 4 (SGD, Adam, Newton-Rapson, Runge-Kutta, etc)

$ML \Rightarrow$ Highly non-linear optimization problem

000000

= nan

Requirements from Physics/ML

Introduction

00000

However, physical systems require some properties from sampling algorithms that have to be satisfied to be considered reliable.

Physics Nat. Rev. Phys, 5, 526-535	Machine Learning
 Respect symmetries 	• Type of activation function arXiv:2305.02334
• Exactness	• Choice of structure arXiv:2309.10688
• Scalability	• Volume of the model arXiv:2209.04882
Tractable likelihood	Initialization of weights

ELE NOR

Restricted Boltzmann Machine (RBM)

Figure: Structure of a Restricted Boltzmann Machine.

- Restricted Boltzmann Machine (RBM) is a generative machine learning model consisting of two layers of nodes.
- The probability distribution of the output layer is given by combination of training parameters.

$$p(\phi) = \frac{1}{Z} e^{-\frac{1}{2}\phi^T K \phi} \qquad (4)$$

where $K = \mu^2 \mathbb{1} - \sigma^2 W W^T$ is called **RBM** kernel.

ELE SQC

Introduction Gaussian RBM Training dynamics RBM as an ultra-violet regulator Non-equilibrium dynamics Conclusion

Training dynamics

Model parameters are updated by gradient assent to maximize the log-likelihood function. For given M number of data from the target distribution, the log-likelihood function is given by

$$\mathcal{L}(\phi|W) = \frac{1}{M} \sum_{d}^{M} \log p(\phi^{(d)}; W), \qquad W_{ia}^{(t+1)} = W_{ia}^{(t)} + \eta \frac{\partial \mathcal{L}}{\partial W_{ia}}$$
(5)

The gradient of the log-likelihood function is given by

$$\frac{\partial \mathcal{L}}{\partial W_{ia}} = \sigma_h^2 \sum_j \left[\langle \phi_i \phi_j \rangle_{\text{target}} - \langle \phi_i \phi_j \rangle_{\text{model}} \right] W_{aj} \tag{6}$$

$$=\sigma_h^2 \sum_j \left[\mathcal{K}_{\text{target},ij}^{-1} - \mathcal{K}_{ij}^{-1} \right] \mathcal{W}_{aj} \tag{7}$$

where, $\mathcal{K}_{\mathrm{target},ij}^{-1} = \langle \phi_i \phi_j \rangle_{\mathrm{target}} \equiv \frac{1}{M} \sum_d^M \phi_i^{(d)} \phi_j^{(d)}$ and $\mathcal{K}_{ij}^{-1} = \langle \phi_i \phi_j \rangle_{\mathrm{model}}$ are the two point correlation function of the training dataset and RBM respectively.

- A. Decelle and C. Furtlehner, arXiv:2011.11307, (2021)
- G. Hinton, UTML TR 2010-003 lecture note, (2010)

Chanju Park (Dep. of Phys.)

Numerical results: Scalar field theory

Gaussian RBM

Farget distribution:
$$p(\phi)=rac{1}{Z}e^{-rac{1}{2}\phi(\partial^2-m^2)\phi}$$

Restricted Boltzmann Machine (RBM)

The probability distribution of the visible layer is given by

$$p(\phi) = \frac{1}{Z} e^{-\frac{1}{2}\phi^T K \phi}$$

where
$$K = \mu^2 \mathbb{1} - \sigma^2 W W^T$$
.

Figure: Structure of a Restricted Boltzmann Machine.

• What does it mean to have larger/smaller μ^2 ?

K > 0 model to converge \Rightarrow sets maximum of W^2

• What does it mean to have a larger/smaller number of hidden nodes?

 $W_{ij} \Rightarrow \text{Rectangular matrix of size}(N_{v_{ij}}, N_h)$

Training dynamics in SVD basis

00

Training dynamics

We can rewrite the gradient equation in terms of singular values of the coupling matrix W.

$$W = U \Xi V^{T}, \quad U U^{T} = \mathbb{1}, \quad V V^{T} = \mathbb{1}$$

$$\Xi = \operatorname{diag}(\xi_{1}, \xi_{2}, \cdots) : \text{ singular values of } W,$$
(8)

Then,

$$\mathcal{K} = \mu^2 \mathbb{1} - \sigma_h^2 U \Xi \Xi^T U^T \equiv U D_K U^T, \quad \mathcal{K}_{\text{target}} = O_\phi D_\phi O_\phi^T$$
(9)

where

$$\mathcal{D}_{\mathcal{K}} = \mathsf{diag}(\mu^2 - \sigma_h^2 \xi_1^2, \mu^2 - \sigma_h^2 \xi_2^2, \cdots), \quad \mathcal{D}_{\phi} = \mathsf{diag}(\kappa_1, \kappa_2, \cdots)$$

$$\frac{\partial \mathcal{L}}{\partial W} = U\sigma_h^2 \left[U^T O_\phi D_\phi^{-1} O_\phi^T U - D_K^{-1} \right] \Xi V^T$$

From the gradient equation written in the singular value basis, we can find some interesting properties of training the RBM.

Chanju Park (Dep. of Phys.)

YTF, Durham, 14 Dec 2023 11 / 21

UV regularization by RBM mass parameter μ^2

We can rewrite the gradient equation in terms of singular values of the coupling matrix W.

00000

RBM as an ultra-violet regulator

$$\frac{\partial \mathcal{L}}{\partial \xi_{\alpha}} = \sigma_h^2 \left[\frac{1}{\kappa_{\alpha}} - \frac{1}{\mu^2 - \sigma_h^2 \xi_{\alpha}^2} \right] \xi_{\alpha}$$
(10)

 ξ_{α} : Singular value of $W \quad \kappa_{\alpha}$: Eigenvalue of K_{target}

There are two fixed points of ξ_{α}

Gaussian RBM

$$\sigma_h^2 \xi_\alpha^2 = \begin{cases} \mu^2 - \kappa_\alpha & \cdots & \mu^2 > \kappa_\alpha \\ 0 & \cdots & \mu^2 \le \kappa_\alpha \end{cases} \Rightarrow \lambda_\alpha = \begin{cases} \mu^2 - \sigma_h^2 \xi_\alpha^2 \sim \kappa_\alpha \\ \mu^2 \end{cases}$$
(11)

The fixed point equation indicates that the singular value ξ_{α} of the coupling matrix W dies off, if the corresponding eigenmode κ_{α} of the target kernel is larger than the RBM mass parameter μ^2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの⊙

Introduction Gaussian RBM Training dynamics RBM as an ultra-violet regulator OOO

Numerical results: Scalar field theory

 λ_{α} is a eigenvalue of the RBM kernel K.

$$\lambda_{\alpha} = \mu^2 \mathbb{1} - \sigma_h^2 \xi_{\alpha}^2 \tag{12}$$

The eigenvalues of the RBM kernel is trained to match the eigenvalues of the target kernel K_{ϕ} , but the high momentum modes larger than the RBM mass parameter are cut off.

= nan

UV regularization by reducing degrees of freedom

000000

In case of $N_h < N_v$, the number of degrees of freedom of the RBM is restricted by the number of hidden nodes.

$$\operatorname{rank}(WW^{T}) \leq \min(N_{v}, N_{h}) \quad \Rightarrow \quad \operatorname{rank}(K) \leq \min(N_{v}, N_{h}) \tag{13}$$

RBM as an ultra-violet regulator

$$\operatorname{eig}(WW^{T}) = (\underbrace{\xi_{1}^{2}, \xi_{2}^{2}, \cdots, \xi_{N_{h}}^{2}}_{N_{h}}, \underbrace{0, \cdots, 0}_{N_{v} - N_{h}})$$
(14)

Then $N_v - N_h$ number of modes of the RBM kernel are fixed to the RBM mass parameter μ^2 and the model possesses N_h degrees of fredom.

$$\lambda_{\alpha} = \begin{cases} \mu^2 - \sigma_h^2 \xi_{\alpha}^2 & \cdots & \alpha \le N_h \\ \mu^2 & \cdots & \alpha > N_h \end{cases}$$
(15)

By removing the degrees of freedom in the RBM, we are keeping N_h number of lowest modes of the target kernel.

Gaussian RBM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの⊙

Numerical results: Scalar field theory

Figure: High momentum cut-off by removing degrees of freedom

The N_h number of modes are trained to match the eigenvalues of the target kernel from the lowest value.

Image: Image:

ELE NOR

Numerical results: MNIST data

Eigenvalue spectrum of the correlation matrix $\langle \phi_i \phi_j \rangle_{\rm MNIST}$ contains modes that are very close to 0.

Figure: Eigenvalue spectrum of the MNIST correlation matrix $\langle \phi_i \phi_j \rangle_{\rm MNIST}.$

$$K_{\rm MNIST} = \langle \phi_i \phi_j \rangle_{\rm MNIST}^{-1}$$
 (16)

- The correlation matrix of the dataset contains 784 eigenvalues and some of the eigenvalues are very small.
- This indicates that the MNIST dataset is a UV divergent dataset.

roduction Gaussian RBM Training dynamics **RBM as an ultra-violet regulator** Non-equilibrium dynamics Conc 0000 000 000 000 000 000

Regeneration quality: MNIST

As more modes are cut off, the regeneration quality of the RBM decreases.

(a) $N_h = 784$

(b) $N_h = 225$

(c) $N_h = 64$

5	0	H	1	9	ð	1	З
4	4	3	5	3	9	Ŧ	7
Э	8	6	9	T	Q		1
4	г		3	2	1	3	8

(d) $N_h = 36$

(e) $N_h = 16$

(f) $N_h = 4$

Figure: Quality of the regenerated image with different numbers of hidden nodes. \rightarrow (\equiv) \rightarrow (\geq) (\sim) \sim (\sim)

Chanju Park (Dep. of Phys.)	Durham YTF	YTF, Durham, 14 Dec 2023 17 / 22
-----------------------------	------------	----------------------------------

Langevin dynamics and Fokker Planck equation

In continuous time limit $\eta \to 0$, we can describe the training dynamics of the machine learning using Langevin equation.

RBM as an ultra-violet regulator

$$\partial_t \xi^2 = \partial_{\xi^2} \mathcal{L} + r, \qquad \partial_{\xi^2} \mathcal{L} = \left[\frac{1}{\kappa} - \frac{1}{\mu^2 - \xi^2}\right] \xi^2$$
(17)

where r is a Gaussian random noise. The corresponding Fokker-Planck equation is

$$\partial_t P(\xi^2, t) = \partial_{\xi^2} \left[\eta \partial_{\xi^2} - \partial_{\xi^2} \mathcal{L} \right] P(\xi^2, t)$$
(18)

Solving the equation, we can obtain leading order behavior of the relaxation time.

$$P(\xi^{2},t) \propto c_{0}|0\rangle + \sum_{n>0} c_{n}|n\rangle e^{-\lambda_{n}t} \quad \Rightarrow \quad \lambda_{1} \sim \frac{\mu^{2} - \kappa}{\kappa^{2}}$$
(19)

Gaussian RBM

イロト (母) (ヨト (ヨト) ヨヨ ののの

Non-equilibrium dynamics

000

Relaxation time and learning rate

Figure: The relaxation of ξ^2 towards the equilibrium distribution. (Left) MNIST data (Right) Scalar field

三日 のへの

Image: Image:

Phase transitions in the Machine learning models

• Ferromagnetic phase transition in Binary models

Figure: Phase diagram of Binary RBMs, Decelle et al. (2018)

Grokking phase transition

000

Non-equilibrium dynamics

Figure: Grokking transition in overparameterized neural networks, Power et al. (2022)

= nac

- Explaining the dynamics of the machine learning models using the language of physics is beneficial to both ML and physics.
- Using tools of physics, we can solve explanability and scalability of the machine learning models.
- Machine learning models contain rich physical structures such as non-equilibrium stochastic process and phase transitions.
- It is multi-disciplinary research area, so any collaboration is welcome!

Introduction 000000	Gaussian RBM 000	Training dynamics	RBM as an ultra-violet regulator 000000	Non-equilibrium dynamics	Conclusion

Thank you!

三日 のへの

Gibbs sampling and information retrieval

Step 1 A sample from the target distribution is passed to the visible layer.

Step 2 The value of the hidden layer is sampled from the conditional probability distribution with the given value of the visible layer.

$$p(h|\phi) = \frac{p(\phi, h)}{\int \mathcal{D}h \, p(\phi, h)} = \frac{q_h e^{\phi^T W h}}{\int \mathcal{D}h \, q_h e^{\phi^T W h}}$$

Step 3 The value of visible layer is sampled from the conditional probability distribution with the given value of the hidden layer.

$$p(\phi|h) = \frac{p(\phi, h)}{\int \mathcal{D}\phi \, p(\phi, h)} = \frac{q_v e^{\phi^T W h}}{\int \mathcal{D}\phi \, q_v e^{\phi^T W h}}$$

Step 4 The samples retrieved from the model follows the probability distribution of the visible layer.

$$p(\phi) = \int \mathcal{D}h \, p(\phi, h) \tag{20}$$

Parameterization of the Gaussian RBM

Gaussian RBM is a RBM with Gaussian distribution as a prior for both visible and hidden layer.

$$q_{\nu}(\phi) = \exp\left(-\frac{\mu^2}{2}\phi^{T}\phi\right), \quad q_{h}(h) = \exp\left(-\frac{1}{2\sigma_{h}^{2}}(h-\eta)^{T}(h-\eta)\right)$$
(21)

With Gaussian prior of above parameterization, the joint probability distribution of the model is given by

$$p(\phi, h) = \frac{1}{Z} \exp\left(\phi^T W h - \frac{\mu^2}{2} \phi^T \phi - \frac{1}{2\sigma_h^2} (h - \eta)^T (h - \eta)\right)$$
(22)

The conditional probability is given by

$$p(\phi|h) = \prod_{i} \mathcal{N}\left(\phi_{i}; \frac{1}{\mu^{2}} \sum_{a} W_{ia}h_{a}, \frac{1}{\mu^{2}}\right), \quad p(h|\phi) = \prod_{a} \mathcal{N}\left(h_{a}; \eta_{a} + \sigma_{h}^{2} \sum_{i} \phi_{i}W_{ia}, \sigma_{h}^{2}\right)$$
(23)

EL NOR

Gaussian RBM as a Scalar Field RBM

Integrating out the hidden layer, we obtain the probability distribution of the visible layer, which is a probability distribution of the retrieved samples.

$$p(\phi) = \int \mathcal{D}h \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2}\phi^T K \phi + \phi^T J\right)$$
(24)

with RBM kernel K, symmetry breaking external source J, and the partition function Z.

$$K \equiv \mu^2 \mathbb{1} - \sigma_h^2 W W^T, \quad J = W \eta, \quad Z = \int \mathcal{D}\phi \, \exp\left(-\frac{1}{2}\phi^T K \phi + \phi^T J\right) \quad (25)$$

From the form of the probability distribution of the visible layer, we can find that the Gaussian RBM can be seen as a free scalar field theory with all to all coupling.

3 × 4 3 × 3 1 × 4 €

Regeneration quality: Scalar field theory

Figure: Regenerated action density with different μ^2 .

Figure: Regenerated action density with different number of hidden nodes.

Image: Image:

●●● = = ● = ● ● = ●

Unsupervised learning

From the gradient equation, •

$$\frac{\partial \mathcal{L}}{\partial W_{ia}} = \sigma_h^2 \sum_j \left[\langle \phi_i \phi_j \rangle_{\text{target}} - \langle \phi_i \phi_j \rangle_{\text{model}} \right] W_{aj}$$
(26)

$$=\sigma_h^2 \sum_j \left[K_{\text{target},ij}^{-1} - K_{ij}^{-1} \right] W_{aj}$$
(27)

- Predefined data is only needen when estimating the two-point correlation function of the target distribution.
- This can be avoided if the two-point correlation function of the target distribution is analyticaly obtainable.
- For example, for 1D free scalar field theory with periodic boundary condition,

$$\langle \phi_i \phi_j \rangle_{\text{target}} = \mathcal{K}_{\phi, ij}^{-1}$$
 (28)

with,

$$K_{\phi,ij} = (m^2 + 2)\delta_{ij} - \delta_{i,j+1} - \delta_{i,j-1}$$
(29)

ELE NOR

Rotational part of the gradient

The orthogonal matrix that diagonalizes the target kernel and the model kernel is not necessarily alligned (or orthogonal) to each other before the training.

$$K_{\phi} = O_{\phi} D_{\phi} O_{\phi}^{T}, \quad K = U D_{K} U^{T}$$
(30)

with

$$O_{\phi}O_{\phi}^{T} = \mathbb{1}, \quad UU^{T} = \mathbb{1}$$
(31)

are the orthogonal matrices that diagonalize the target kernel and the model kernel. The full gradeint equation considering the rotation is,

$$\sigma_h^2 \left[\mathcal{K}_{\phi}^{-1} - \mathcal{K}^{-1} \right] = U \sigma_h^2 \left[U^T \mathcal{O}_{\phi} \mathcal{D}_{\phi}^{-1} \mathcal{O}_{\phi}^T - \mathcal{D}_{\mathcal{K}}^{-1} \right] \Xi \mathcal{V}^T$$
(32)

where Ξ is a rectangular singular value matrix and V is the right singular matrix of W.

$$W = U \Xi V^{T}$$
(33)

3 × 4 3 × 3 1 × 4 €

$N_v = 2 N_h = 1$ case

- In case of $N_v = 2$ and $N_h = 1$, the training equation is directly traiceable.
- The orthogonal matrix O_{ϕ} and U are 2 × 2 rotation matrices with angle θ_{ϕ} and θ_{U} respectively.
- The combination $O_{\phi}^{T}U$ is a rotation over an angle $\Delta \theta = \theta_{U} \theta_{\phi}$.
- Training equation for the angle $\Delta \theta$ is written as,

$$\frac{d\Delta\theta}{dt} = \sigma_h^2 \left(\frac{1}{\kappa_2} - \frac{1}{\kappa_1}\right) \cos \Delta\theta \sin \Delta\theta \tag{34}$$

Image: Image:

which gives two limits of $\Delta \theta$,

$$\kappa_2 > \kappa_1 \quad \Leftrightarrow \quad \tilde{
ho} < 0 \quad \Leftrightarrow \quad \lim_{t \to \infty} \Delta heta(t) = 0, \quad \Leftrightarrow \quad \xi_1 \to \kappa_1, \ \xi_2 = 0$$
 (35)

$$\kappa_2 < \kappa_1 \quad \Leftrightarrow \quad \tilde{
ho} > 0 \quad \Leftrightarrow \quad \lim_{t \to \infty} \Delta \theta(t) = \frac{\pi}{2} \quad \Leftrightarrow \quad \xi_1 \to \kappa_2, \, \xi_2 = 0.$$
 (36)

⇒ ↓ ≡ ↓ ≡ ⊨ √ Q ∩