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Introduction
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Lattice Field Theory simulation

1 wl - @ The distribution of particles across the
= 1. " space and time are described by
. ‘ Boltzmann distribution.
TR 'E-,‘ 1 5
%‘3 ‘ 910 P(#’ﬂ/_hA) = Ee_S[d}7w’A] (1)
y Jb% &q\} X

@ The configurations, which are snapshots
of the discretized space-time with fields,
are sampled from the Boltzmann

Figure: One time slice of 4D U(1) gauge theory
configuration.

0 - distribution using Monte Carlo algorithm.
2

5 @ Then the expectation value of a observable
P is calculated by averaging over the value

8 of the observable in each configuration.

. 1Y
14 . <O> =~ N Z Oi (2)
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Figure: 2D Ising model configuration.
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Some limitations of Monte Carlo simulation

ritical slowing dow Sign probl

@ Computational cost diverges near the
critical point of the system due to the
diverging correlation length.

@ Sampling efficiency worsens when the
probability distribution is complex.

model.

Nindependent =

N

2Tint

Figure: Autocorrelation increases near the
phase transition. Example from 2D Ising
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Figure: Real part of the complex probability
density function.

The probability distribution is highly os-

cillatory.
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Generative machine learning models

Generative machine learning model is a machine learning model that maps between
input distribution and the target distribution.

.;C)O ~ Q(X) l} px;1x) = plx,lx) -+ pOy|x,) .} 5;’ ~ p(y)

Input distribution

Markov process Target distribution

Input distribution Generative model Target distribution

Markov chain can be replaced by a single neural network and can be run in parallel,
accelerating the sampling process.
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Examples of generative machine learning models

@ Anonymous
What is generative machine learning modef?

@ chataPT

Agenerative machine learning model is atype of model that is trained to generate new data

thatis similar to the trainir it posed to. In other words, it
patterns and structures of the data and can then generate new samples that share those
characteristics.

in contrast, are trained 1 the input

data.

types of; i , and approachis using
al Networks d Variational

of two neural networks, a

that are training.

, and i i between real

samples. The training produces

‘samples that are indistinguishable from real data.

Variational Es are atype of learr
probabilistic mapping from the input space to a latent space. They generate|
by sampling from this latent space and then decoding the samples back intd
data space. VAEs are istic i

pr(h)
aspecific distribution. s /‘

Figure: Chat-GPT, GAN, Normalizing flow. arXiv:2006.11239, arXiv:2101.08176
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Typical structure of neural network

& [atent layerts) List of hyperparameters

© Number of layers/width of each
layer = Volume of your model

@ Activation function “f”

7‘ ’? (ReLU, tanh, sigmoid, etc)

Output layer © Objective function “L"
(MSE, cross entropy, etc)

Input layer

@ Output y of the network
S N e © Optimization algorithm
y = f(WX), fitting parameters W (SGD, Adam, Newton-Rapson,

L . . . R -Kutt i
@ Minimize the objective function _ g i, S

L=L(y,y) — find optimal W

ML = Highly non-linear optimization problem
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Requirements from Physics/ML

However, physical systems require some properties from sampling
algorithms that have to be satisfied to be considered reliable.

Physics Nat. Rev. Phys, 5, 526-535 Machine Learning

@ Respect symmetries @ Type of activation function
arXiv:2305.02334

@ Exactness @ Choice of structure
arXiv:2309.10688

@ Scalability @ Volume of the model
arXiv:2209.04882

@ Tractable likelihood @ Initialization of weights

Chanju Park (Dep. of Phys.) Durham YTF YTF, Durham, 14 Dec 2023
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Restricted Boltzmann Machine (RBM)

o
Information forwarding & retrieval
-
—
o

¢, 1€ (1,Ny) ha, a € (1,Ny)

Wiq

Visible Hidden

Figure: Structure of a Restricted Boltzmann Machine.

Restricted Boltzmann Machine

(RBM) is a generative machine
learning model consisting of two
layers of nodes.

The probability distribution of the
output layer is given by
combination of training parameters.
I _147ke
p(o) = et 4)
where K = 121 — o> WWT is
called RBM kernel.

YTF, Durham, 14 Dec 2023 7/21
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Training dynamics

Model parameters are updated by gradient assent to maximize the log-likelihood
function. For given M number of data from the target distribution, the log-likelihood
function is given by

8£
W | W_(t+1 W(t
The gradient of the log-likelihood function is given by
oL
W = Z [(6ii)target — (G0} modet] Waj (6)
= 0Oh Z [Kt:u}gct ij KU_I] Waj (7)

(d) =1 i
where, Km]rget i = (Bid))targes = 3 Zd d)j and K~ = ($i$;)moder are the two
point correlation function of the training dataset and RBM respectively.
A. Decelle and C. Furtlehner, arXiv:2011.11307, (2021)
G. Hinton, UTML TR 2010-003 lecture note, (2010)
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Numerical results: Scalar field theory

T 1 _1482—m2
Target distribution: p(¢) = >e 2007 —m)e
10
I
9 | W MCMC (5): 0.487(3) 03 0.221(3)
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Ao = 21 — 02€2 © Eigenvalue of K

Ko = p2 +m?= 2+ m2) + 2 cos (%a) : Eigenvalue of Kiarget
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Restricted Boltzmann Machine (RBM)

Information forwarding & retrieval

-
—

The probability distribution of

\ the visible layer is given by
bi, i € (1,N,) ha, a € (1,Ny) 1 )
_ —30TKo
= —e 2
o p(o) =~
Wiq
Visible Hidden

where K = 121 — a2 WWT.
Figure: Structure of a Restricted Boltzmann Machine.
e What does it mean to have larger/smaller ;??
K > 0 model to converge = sets maximum of W2
@ What does it mean to have a larger/smaller number of hidden nodes?

Wjj = Rectangular matrix of size (N, Nj)
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Training dynamics in SVD basis

We can rewrite the gradient equation in terms of singular values of the coupling matrix
w.

w=uvz=v", w'=1, w’'=1 (8)
= = diag(&1, &2, -+ ) : singular values of W/,
Then,
K= 11— ohUZ="U" = UDkU",  Kiarger = 05D50 (9)
where

Dk = diag(y® — o#&i, 1i° — 043, ++), Dy = diag(k1, K2, )

oL

S = Udh [UT 0,010l U - Dt | Zv7

From the gradient equation written in the singular value basis, we can find some
interesting properties of training the RBM.
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RBM as an ultra-violet regulator
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UV regularization by RBM mass parameter ;i

We can rewrite the gradient equation in terms of singular values of the coupling

matrix W.
oL ,[1 1
o8, O [ W ozgg] e (10)

&q: Singular value of W K, Eigenvalue of Kiarget

There are two fixed points of &,

2_"{01 2>Ho¢ 2_0.254“/’{&
U%@i—{u 0 //j2<f<éa = Ao = a " (11)

The fixed point equation indicates that the singular value &, of the
coupling matrix W dies off, if the corresponding eigenmode «, of the
target kernel is larger than the RBM mass parameter ;:°.
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Numerical results: Scalar field theory

9 9 9
8 8 8
7R, 7 P 7
1 W o <o <o
5 T e 50 50
- 8 2 P
4 [eov vt 4 4
3 ‘ s 3 ‘ ‘ 3 ‘ ‘
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
Epoch Epoch Epoch
(@) u2 =78 (b) 2 =71 (c) u2 =5.8
Ao is a eigenvalue of the RBM kernel K.
2 2,2
Ao = p1 — 0pé0, (12)

The eigenvalues of the RBM kernel is trained to match the eigenvalues of the target
kernel Ky, but the high momentum modes larger than the RBM mass parameter are cut

off.

Durham YTF

Chanju Park (Dep. of Phys.)
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UV regularization by reducing degrees of freedom

In case of N < N, the number of degrees of freedom of the RBM is restricted by the
number of hidden nodes.

rank(WWT) < min(N,, N;) =

rank(K) < min(N,, Np) (13)
elg(WWT)Z(ff,fg, 75/2\1;,707"' 70) (14)
—— ——
Ny Ny —Np

Then N, — Ny number of modes of the RBM kernel are fixed to the RBM mass
parameter ;® and the model possesses N, degrees of fredom.

2 242
wo—opés 0 a< N
Ao = 1
{ /,Lz o a> N, (15)

By removing the degrees of freedom in the RBM, we are keeping N, number of
lowest modes of the target kernel.

Chanju Park (Dep. of Phys.)
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Numerical results: Scalar field theory
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Figure: High momentum cut-off by removing degrees of freedom
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The N, number of modes are trained to match the eigenvalues of the target kernel from
the lowest value.
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RBM as an ultra-violet regulator
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Numerical results: MNIST data

Eigenvalue spectrum of the correlation

matrix (¢;¢;)mnisT contains modes that are

very close to 0.
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Figure: Eigenvalue spectrum of the MNIST correlation
matrix (¢;¢;) MNIST-

KMNIsT = <¢i¢j>i/ﬁ\IIST

Figure: The MNIST dataset.

(16)

The correlation matrix of the
dataset contains 784 eigenvalues
and some of the eigenvalues are
very small.

This indicates that the MNIST

dataset is a UV divergent dataset.
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RBM as an ultra-violet regulator
00000@

Regeneration quality: MNIST

As more modes are cut off, the regeneration quality of the RBM decreases.

(d) N, = 36 (e) N = 16 (F) Ny =4

Figure: Quality of the regenerated image with different numbers;of hidden nodes.
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Non-equilibrium dynamics
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Langevin dynamics and Fokker Planck equation

In continuous time limit  — 0, we can describe the training dynamics of
the machine learning using Langevin equation.

1 1
2 _ 2
8,_{ = 852/3 + r, 8§2£ = |:/§; — 7M2 — 62:| (5 (].7)

where r is a Gaussian random noise. The corresponding Fokker-Planck
equation is

OeP(£2,t) = Og2 [N0e2 — 02 L] P(£2, 1) (18)

Solving the equation, we can obtain leading order behavior of the
relaxation time.

G a|nye ot ~ESE
(£%,1) < c0l0) + > _ caln)e = M~ (19)

n>0
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Relaxation time and learning rate

0.020
6
0.015 o
4,
0.010 5 .
24 P
0.005 b
14 P
0.000 0 b
0 500 1000 1500 2000 2500 7 i :

Figure: The relaxation of &2 towards the equilibrium distribution. (Left) MNIST data (Right) Scalar field
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Non-equilibrium dynamics
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Phase transitions in the Machine learning models

o Ferromagnetic phase transition in @ Grokking phase transition

Binary models
Modular Division (training on 50% of data)
100 — train
. Phase diagram VAl
80
Stability Gap ( 0K =0.5
' ‘
2 60
P c >
a0 ]
4 g
N F . $ w0
\ T § s 8 10
20
SG ~__
AT
0
o 05 . 1 2 2 s s . 10t 102 10° 104 10° 108
o/ Optimization Steps
Figure: Phase diagram of Binary RBMs, Decelle et al. Figure: Grokking transition in overparameterized neural
(2018) networks, Power et al. (2022)
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Conclusion

@ Explaining the dynamics of the machine learning models using the
language of physics is beneficial to both ML and physics.

@ Using tools of physics, we can solve explanability and scalability of the
machine learning models.

@ Machine learning models contain rich physical structures such as
non-equilibrium stochastic process and phase transitions.

@ It is multi-disciplinary research area, so any collaboration is welcome!
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Conclusion

Thank you!
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Gibbs sampling and information retrieval

Step 1 A sample from the target distribution is passed to the visible layer.

Step 2 The value of the hidden layer is sampled from the conditional probability distribution
with the given value of the visible layer.

pleh)  _  gpet’™
I Dhp(¢,h) — [Dhque?” W

p(hlp) =

Step 3 The value of visible layer is sampled from the conditional probability distribution with the
given value of the hidden layer.

_ p(e,h) g’ W
PO = Dy p(onh) — [ Do qped W

Step 4 The samples retrieved from the model follows the probability distribution of the visible
layer.

p(6) = / Dh p(é, h) (20)

Chanju Park (Dep. of Phys.) Durham YTF
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Parameterization of the Gaussian RBM

Gaussian RBM is a RBM with Gaussian distribution as a prior for both visible and
hidden layer.

0:0) = o0 (<557) . ah) = e (~gah-n(-m) (@

With Gaussian prior of above parameterization, the joint probability distribution of the
model is given by

pl6.1) = oo (67 Wh— 70— Lo —)(h- ) (22)

The conditional probability is given by

Chanju Park (Dep. of Phys.) Durham YTF

YTF, Durham, 14 Dec 2023 23 /21
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Gaussian RBM as a Scalar Field RBM

Integrating out the hidden layer, we obtain the probability distribution of the
visible layer, which is a probability distribution of the retrieved samples.

/th ¢, h) = —exp <—; TK¢+¢TJ> (24)

with RBM kernel K, symmetry breaking external source J, and the partition
function Z.

K=l - WWT, J=Wn, Z-= /D¢> exp <—;¢>TK¢+ ¢>TJ> (25)

From the form of the probability distribution of the visible layer, we can find that
the Gaussian RBM can be seen as a free scalar field theory with all to all
coupling.

Chanju Park (Dep. of Phys.) Durham YTF YTF, Durham, 14 Dec 2023 24 /21
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Regeneration quality:

Scalar field theory
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Figure: Regenerated action density with different uz.
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Figure: Regenerated action density with different number of hidden nodes.
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Unsupervised learning

@ From the gradient equation,

oL = Z [<¢ ¢J>target - <¢ ¢J>model] Waj (26)

oWy
= Z [Ktaiget i KUﬂ] W (27)
j

@ Predefined data is only needen when estimating the two-point correlation function of
the target distribution.

@ This can be avoided if the two-point correlation function of the target distribution is
analyticaly obtainable.

@ For example, for 1D free scalar field theory with periodic boundary condition,

<¢i¢j>target = qu_,b (28)
with,
Ko, = (m® + 2)5 — i jr1 — 61 j (29)

Chanju Park (Dep. of Phys.) Durham YTF YTF, Durham, 14 Dec 2023 24/
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Rotational part of the gradient

The orthogonal matrix that diagonalizes the target kernel and the model kernel is not
necessarily alligned (or orthogonal) to each other before the training.

Ky = 0,D40], K = UDxU™ (30)
with
0,0, =1, UU" =1 (31)

are the orthogonal matrices that diagonalize the target kernel and the model kernel. The
full gradeint equation considering the rotation is,

o [K;l - K_l] = Uo} [UTOd,D;quf - D;l] =V’ (32)
where = is a rectangular singular value matrix and V is the right singular matrix of W.

w=u=v" (33)

Chanju Park (Dep. of Phys.) Durham YTF YTF, Durham, 14 Dec 2023 24 /21
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N, =2 N, =1 case

@ In case of N, =2 and N, = 1, the training equation is directly traiceable.

@ The orthogonal matrix Og and U are 2 x 2 rotation matrices with angle 4 and 0y
respectively.

@ The combination O;U is a rotation over an angle Af = 6y — 0.

@ Training equation for the angle A is written as,

dTAtH =0} (%2 — %1) cos Afsin Af (34)

which gives two limits of A6,
K2>K1 © p<0 & tin;er(t):Q & &k, =0 (35)
Ko<k & >0 & tin;oAG(t):g & & ok &=0  (36)

Chanju Park (Dep. of Phys.) Durham YTF YTF, Durham, 14 Dec 2023 24 /21
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