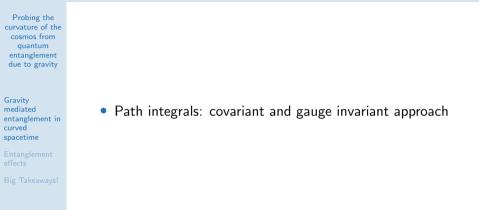
Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement i curved spacetime

Entanglement effects

Big Takeaways!


Probing the curvature of the cosmos from quantum entanglement due to gravity

Abhinove Nagarajan Seenivasan anseenivasan1@sheffield.ac.uk

YTF23: 14 December 2023

ArXiv: 2311.05483, 2310.17311 with Dr. Suddhasattwa Brahma, The University of Edinburgh

Gravity mediated entanglement in curved spacetime

Gravity mediated entanglement in curved spacetime

Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement in curved spacetime

Entanglement effects

Big Takeaways!

- Path integrals: covariant and gauge invariant approach
- Two massive non-interacting harmonic oscillators in in de Sitter: $ds^2 = a^2(\tau) \left(-d\tau^2 + d\mathbf{x}^2\right)$

dS effects

Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement in curved spacetime

Entanglemen effects

Big Takeaways!

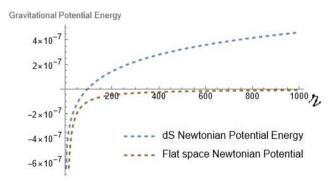


Figure: Gravitational potential energies in the "Newtonian" limits of dS and Minkowski. e consider the oscillators to have unit masses and take $G = 10^{-5} (\text{GeV})^{-2}$, $H = 10^{-2} \text{GeV}$, in units of $\hbar = c = 1$, to enhance the effect.

dS effects

Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement in curved spacetime

Entanglement effects

Big Takeaways!

The new potential is,

$$U_{
m int}^{
m dS} = -rac{G\ m^2}{a\ \imath} - 2Gm^2H\ \ln\left(rac{a}{aH\,\imath+1}
ight)\,,$$

in the "Newtonian limit of dS".

What does this mean for the oscillators and for entanglement?

Entanglement in dS

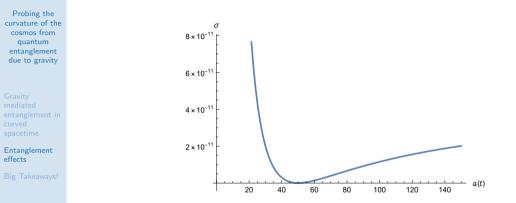


Figure: Entanglement entropy as a function of the scale factor from the gravitational interaction potential in dS. We consider unit masses with parameters $G = 10^{-5} (\text{GeV})^{-2}, \omega = 0.1 \text{GeV}, H = 10^{-2} \text{GeV}, d = 2 \text{GeV}^{-1}$ in units of $\hbar = c = 1$, to enhance the effect.

Big Takeaways

Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement i curved spacetime

Entanglement effects

Big Takeaways!

• GME is sensitive to the background curvature

Big Takeaways

Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement in curved spacetime

Entanglement effects

Big Takeaways!

- GME is sensitive to the background curvature
- Cosmology is a natural laboratory for particles that are well-separated.

Big Takeaways

Probing the curvature of the cosmos from quantum entanglement due to gravity

Gravity mediated entanglement in curved spacetime

Entanglement effects

Big Takeaways!

- GME is sensitive to the background curvature
- Cosmology is a natural laboratory for particles that are well-separated.
- CMB photons and inflation