Re-Evaluation of the HVP Contribution to the Anomalous Magnetic Moment of the Muon

Aidan Wright
University of Liverpool

YTF 2023: $14^{\text {th }}-15^{\text {th }}$ December

The Anomalous Magnetic Moment \& $g-2$

- Dirac: $g=2$, QFT: $g=2+a_{\mu}$ (bottom)
- Largest theory uncertainty: hadronic contribution due to QCD non-perturbativity.
- Hadronic contribution can be calculated using lattice QCD or dispersive methods (this presentation).
- Dispersive result is in strong tension with recent results of the $g-2$ experiment.

Dirac:
2

$a_{\mu}^{Q E D, N^{4} L O}:$
$116584718.931(104) \times 10^{-11}$

$a_{\mu}^{E W, N N L O}:$
$153.6(1.0) \times 10^{-11}$

Dispersive $a_{\mu}^{H V P}$

- Take experimental inputs of $e^{+} e^{-} \rightarrow$ hadrons in non-perturbative region and integrate cross section σ with a known kernel $K(s)$.
- Complicated by:
- Multiple hadronic final states
- Tension between $e^{+} e^{-}$datasets (CMD- $3 \pi^{+} \pi^{-}$)
- Radiative corrections
- Data combination
- (Right) Plot of σ vs. \sqrt{s} in the $\eta \pi^{+} \pi^{-}$channel.

Database Introduction and Structure

- Previous FORTRAN code read in data from saved .txt files.
- New Python3 code uses a relational SQL database which is then used to construct objects.
- (Right) Structure of the database: Channels \rightarrow Datasets \rightarrow Data \rightarrow Covariances
- Dataset object inherits channel attributes and contains its data.

Blinding

- Previous analysis was not blinded.
- New analysis should be.
- Blind using seeds $\{s 1, s 2, s 3, s 4, s 5\}$:
- Channel number (s5: c $\left.\rightarrow \mathrm{c}^{\prime}=(c+s 5) \bmod 100\right)$
- Sign: $a= \pm 1$
- Scale: b in $0.1 \rightarrow 0.9$ or $1.1 \rightarrow 10$
- Offset: s_{0} in $-0.01 \mathrm{GeV}^{2} \rightarrow 1.00 \mathrm{GeV}^{2}$
- Power: p with $0.01 \leq|p| \leq 0.05$
- Blinding variables $\left\{a, b, s_{0}, p\right\}$ use concatenations of c^{\prime} and $\{s 1, s 2, s 3, s 4\}$. e.g.: $s 1=1, c^{\prime}=63 \Rightarrow$ sign_seed $=$ python.random.seed(163)

