A brief geometrical introduction to the Penrose Transform

Diego Hernández Kent

The University of Edinburgh.
YTF Dec 2023

Compactified Minkowski

Double Fibration

Considering $\pi_{1}\left(S_{1}, S_{2}\right)=S_{1}$ y $\pi_{2}\left(S_{1}, S_{2}\right)=S_{2}$ we establish a correspondence, by taking $A \subset \mathbb{C P}^{3}$ to $c(A):=\pi_{2}\left(\pi_{1}^{-1}(A)\right) \subset G_{2,4}(\mathbb{C})$ and reciprocally, for $B \subset G_{2,4}(\mathbb{C})$ we take

$$
c^{-1}(B):=\pi_{1}\left(\pi_{2}^{-1}(B)\right) \subset \mathbb{C P}^{3}
$$

The space of null-lines

$$
\Sigma\left(Z^{0}, Z^{1}, Z^{2}, Z^{3}\right):=Z^{0} \bar{Z}^{2}+Z^{1} \bar{Z}^{3}+Z^{2} \bar{Z}^{0}+Z^{3} \bar{Z}^{1}
$$

Definition
We define $\mathbb{P N}, \mathbb{P T}^{+}$and $\mathbb{P T}^{-}$as

$$
\begin{aligned}
\mathbb{P N} & :=\left\{\left[Z^{0}: Z^{1}: Z^{2}: Z^{3}\right] \in \mathbb{P} \mathbb{T} \mid \Sigma\left(Z^{0}, Z^{1}, Z^{2}, Z^{3}\right)=0\right\} \\
\mathbb{P T}^{+} & :=\left\{\left[Z^{0}: Z^{1}: Z^{2}: Z^{3}\right] \in \mathbb{P T} \mid \Sigma\left(Z^{0}, Z^{1}, Z^{2}, Z^{3}\right)>0\right\} \\
\mathbb{P T}^{-} & :=\left\{\left[Z^{0}: Z^{1}: Z^{2}: Z^{3}\right] \in \mathbb{P} \mathbb{T} \mid \Sigma\left(Z^{0}, Z^{1}, Z^{2}, Z^{3}\right)<0\right\}
\end{aligned}
$$

Light rays

Proposition

There is a 1-1 correspondence between light-rays in real space-time and proyective twistors in $\mathbb{P N}$. Hence $\mathbb{P N}$ is the space of all space-time light-rays. Moreover, $L_{\vec{x}}:=c^{-1}(\mathcal{E}(\vec{x}))$ is intrinsically the celestial sphere of the event \vec{x}.

Twistorial solution to the wave equation

I) We begin by choosing $\left[A_{\alpha}\right],\left[B_{\alpha}\right] \in \mathbb{P T}^{*}$ to define

$$
f\left(Z^{\alpha}\right):=\frac{1}{A_{\alpha}\left(Z^{\alpha}\right) B_{\alpha}\left(Z^{\alpha}\right)}
$$

writing $A_{\alpha}\left(Z^{\alpha}\right)=A_{0} Z^{0}+A_{1} Z^{1}+A_{2} Z^{2}+A_{3} Z^{3}$.
We denote $L_{\vec{k}}:=\operatorname{Ker}\left(A_{\alpha}\right) \cap \operatorname{Ker}\left(B_{\alpha}\right)$

Twistorial solution to the wave equation

II) Then, fixing the previous planes, we take $x \in G_{2,4}$ and restrict f to L_{x}, so $\left.f\right|_{L_{x}}$ is a meromorphic function over the Riemann sphere with two poles.

Twistorial solution to the wave equation

II) Then we consider a contour between the two poles and compute the residue of $\left.f\right|_{L_{x}}\left(Z^{2} d Z^{3}-Z^{3} d Z^{2}\right)$ on one of them, the result will be a complex number.

Twistorial solution to the wave equation

III) Varying x (but keeping k fixed) we obtain a function from $G_{2,4}$ to the complex numbers. It turns out that this function Is a solution to the wave equation $\square \phi=0$!

$$
\phi(t, x, y, z):=\left.\frac{1}{2 \pi i} \oint_{\mathcal{C}} f\right|_{L_{\bar{x}}}\left(Z^{2}, Z^{3}\right)\left(Z^{2} d Z^{3}-Z^{3} d Z^{2}\right)
$$

This way of assigning to every homogeneous polynomial of degree -2 a solution to the complexified wave equation is known as the Penrose Transform.

Twistorial solution to the wave equation

To assure that ϕ is well-defined, we restrict the domain to the future cone

$$
\mathbb{C M}^{+}:=\left\{x \in G_{2,4}(\mathbb{C}): L_{x}=c^{-1}(\{x\}) \subset \mathbb{P T}^{+}\right\}
$$

so we have that for every $x \in \mathbb{C M}^{+} \quad L_{x} \cap L_{k}=\varnothing$.

$L_{\vec{x}}$

Twistorial solution to the wave equation

The correspondence between fields \leftrightarrow homogeneous polynomials of degree -2 is not 1 a 1 so there is some redundancy

$$
\begin{gathered}
\left.\oint_{\mathcal{C} \subset \mathbb{C P}^{1}}\left(f+g^{+}\right)\right|_{L_{\vec{x}}}\left(Z^{2}, Z^{3}\right)\left(Z^{2} d Z^{3}-Z^{3} d Z^{2}\right) \\
=\left.\oint_{\mathcal{C} \subset \mathbb{C P}^{1}} f\right|_{L_{\vec{x}}}\left(Z^{2}, Z^{3}\right)\left(Z^{2} d Z^{3}-Z^{3} d Z^{2}\right) \\
\text { moreover } f_{01} \sim f_{01}+\left(h_{1}-h_{0}\right)
\end{gathered}
$$

so that

Theorem

The geometric procedure defined by the integral formula leads to an isomorphism

$$
\check{\mathrm{H}}^{1}\left(\mathbb{P T}^{+}, \mathcal{O}_{\mathbb{P T}^{+}}(-2)\right) \cong\{\text { Holomorphic positive frequency solutions }
$$ to complexified wave equation $\left.\overline{\mathcal{M}}_{\mathbb{R}}^{1,3}\right\}$

¡Thanks for your attention!

References

（ Atiyah，M．（1979）．Geometry of yang－mills fields（ 1° ）．Academia Nazionale dei Lincei Scuola Normale Superiore．
围 Eastwood，M．（1951）．Twistor theory（the penrose transform）． Mathematical Institute，Oxford，1－11．
围 Huggett，S．（2022）．Twistor geometry．
http：／／stephenhuggett．com／Twistorgeometry．pdf
－Huggett，S．，\＆Tod，K．（1985）．An introduction to twistor theory $\left(2^{\circ}\right)$ ．Cambridge University Press．
Penrose，R．（1979）．On the twistor descriptions of massless fields．
Twistor Newsletter．
Re Penrose，R．（2004）．El camino a la realidad（5 ${ }^{\circ}$ ）．Debate．
围 Schottenloher，M．（2008）．A mathematical introduction to conformal field theory $\left(2^{\circ}\right)$ ．Springer．
？Ward，R．，\＆Wells，R．（1990）．Twistor geometry and field theory $\left(1^{\circ}\right)$ ．Cambridge University Press．

Writing

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\frac{i}{\sqrt{2}}\right)\left(\begin{array}{ll}
A_{0} & A_{1} \\
B_{0} & B_{1}
\end{array}\right)\left(\begin{array}{cc}
t+z & x+i y \\
x-i y & t-z
\end{array}\right)+\left(\begin{array}{ll}
A_{2} & A_{3} \\
B_{2} & B_{3}
\end{array}\right)
$$

our integrand is

$$
\omega:=\left.f\right|_{L_{\bar{x}}}\left(Z^{2}, Z^{3}\right)\left(Z^{2} d Z^{3}-Z^{3} d Z^{2}\right)=\frac{\left(Z^{2} d Z^{3}-Z^{3} d Z^{2}\right)}{\left(a Z^{2}+b Z^{3}\right)\left(c Z^{2}+d Z^{3}\right)}
$$

it turns out that

$$
\frac{1}{2 \pi i} \oint_{\mathcal{C} \subset \mathbb{C P}^{1}} \omega=\frac{1}{2 \pi i} \oint_{\tilde{\mathcal{C}} \subset \mathbb{C}} \frac{1}{a d-b c} \frac{d \xi}{\xi}=\frac{1}{a d-b c}
$$

hence

$$
\phi(t, x, y, z)=\frac{2}{\left(A_{1} B_{0}-A_{0} B_{1}\right)\|\vec{x}-\vec{k}\|_{1,3}^{2}}
$$

Twistorial solution to the zero-rest-mass field equations

Theorem
(Penrose Transform) There is a 1-1 correspondence

$$
\check{\mathrm{H}}^{1}\left(\mathbb{P T}^{+}, \mathcal{O}(-2 s-2)\right) \leftrightarrow
$$

\{Holomorphic solutions to the zero-rest-mass field equations
with helicity s in $\left.\mathbb{C M}^{+}\right\}$

Invariant interpretation

1. We fix two planes $A, B \subset \mathbb{P T}$ so that $L_{k}:=A \cap B \subset \mathbb{P T}^{-}$. And fix $[f] \in \check{H}^{1}\left(\mathbb{P T}^{+}, \mathcal{O}_{\mathbb{C P}^{3}}(-A-B)\right)$.
2. For every $x \in \mathbb{C M}^{+} \subset G_{2,4}(\mathbb{C})$ we take the pull-back

$$
\iota_{x}^{*} \mathcal{O}_{\mathbb{C P}^{3}}(-A-B)=\mathcal{O}_{L_{x} \cong \mathbb{C P}^{1}}(-\tilde{a}-\tilde{b})
$$

where $\tilde{a}=A \cap L_{x}$ y $\tilde{b}=\underset{\tilde{b}}{B} \cap L_{x}$. Also $[f]$ induces an element $\iota_{x}^{*}[f] \in \check{\mathrm{H}}^{1}\left(L_{x}, \mathcal{O}_{L_{x}}(-\tilde{a}-\tilde{b})\right)$. As ι_{x} is an inclusion this just restricts $[f]$ to L_{x}.

Invariant interpretation

- The Serre Duality tells us that

$$
\check{H}^{1}\left(L_{x}, \mathcal{O}_{L_{x}}(-\tilde{a}-\tilde{b})\right) \cong \check{H}^{0}\left(L_{x}, K_{L_{x}}(\tilde{a}+\tilde{b})\right)^{*}
$$

Also it turns out that $K_{L_{x}}(\tilde{a}+\tilde{b}):=T^{*}\left(\mathbb{C P}^{1}\right) \otimes[\tilde{a}+\tilde{b}]$ is trivial! hence

$$
\check{H}^{1}\left(L_{x}, \mathcal{O}_{L_{x}}(-\tilde{a}-\tilde{b})\right) \cong \check{H}^{0}\left(L_{x}, K_{L_{x}}(\tilde{a}+\tilde{b})\right)^{*} \cong \check{H}^{0}\left(L_{x}, \mathcal{O}_{L_{x}}\right) \cong \mathbb{C}
$$

3. With this The Penrose transform is the homomorphism $P: \mathrm{H}^{1}\left(\mathbb{P T}^{+}, \mathcal{O}_{\mathbb{C P}^{3}}(-A-B)\right) \rightarrow \mathrm{H}^{0}\left(\mathbb{C M}^{+}, \mathcal{O}_{\mathbb{C M}^{+}}\right)$given by

$$
P([f])(x):=S\left(\iota_{x}^{*}[f]\right)
$$

whose image consists precisely of the sections that are a solution to the wave equation.

