

Listening for dark matter

Damon Cleaver and Christopher McCabe King's College London

Gong Talk, YTF 2023, IPPP Durham

[Planck, 2018]

What do we know?

$\Omega_{\rm CDM} h^2 \sim 0.120 \pm 0.001$

What are Direct Detection (DD) experiments sensitive to?

 M_{γ}

Higher mass, lower number $n_{\gamma} \sim 1/m_{\gamma}$ density

Experiment with higher exposure required to constrain same cross section

Macroscopic Dark Matter

- General class of DM with:
 - Planck-mass (or above) $m_{\chi} \gtrsim M_{pl}$ often parameterised in grams (!)
 - DM nucleon cross section is roughly that of the geometric cross section $\sigma_{\chi N} \approx \sigma_{\chi,geo} \equiv \pi R_{\chi}^2$.
 - R_{χ} encodes the macro geometry (from being constituent DM) and absorbs any short range interaction correction to the geometric radius

Who has large exposure experiments?

- Proposition for acoustic neutrino experiments.
- Designed to find low number density UHE Neutrinos
- Showers created from PeV-EeV (10¹⁵ 10¹⁸ eV) neutrinos could create a detectable pressure wave from thermo-acoustic heating.

$$\nabla^2 P(\mathbf{r}, t) = \frac{1}{c_s^2} \frac{\partial^2 P}{\partial t}$$
Acoustic pressure

What experiment can be done?

- hydrophones to detect the resulting pressure wave
- Why not also look for macro dark matter?

$$\left(\frac{dE}{dx}\right)_{\text{water}} = \rho_w \sigma_\chi v_{\chi i}^2 \exp\left(-2\frac{\sigma_\chi}{m_\chi}\rho\right)$$

• Idea: Instrument up to 100km³ of water (albeit ambitiously) with sensitive

Proposed Acoustic Neutrino Experiment ~4km wide LUX-ZEPLIN (LZ) **1.5**m **1.5m**

Sensitivities

[1] D. M. Jacobs, G. D. Starkman, and B. W. Lynn, Macro dark matter (2015). [2] J. Singh Sidhu, R. J. Scherrer, and G. Starkman, Death and serious injury from dark matter (2020)

- Acoustic Ohya Cosmology Mica White Dwarfs Humans Fireballs
- With hydrophones available right now, bounds lie mostly within already excluded space
- Mica [1] and Humans [2] bounds overlap
- **Better hydrophone** sensitivity = better cross section sensitivity - could plug the gap!

Punchline

Macro dark matter, despite its low number density, could be detected in proposed acoustic neutrino experiments!

Thank you for listening