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Introducing theWorldline formalism

Path integrals in QFT usually refer to functional integrals over field configurations

as in the second quantised approach. In the worldline formalism, we study QFT

as path integrals over relativistic point particles[1, 2].

Propagator (scalar QED) - Dx′x[A] = 〈x′|(−(∂µ + ieAµ)2 +m2)−1|x〉:

Dx′x[A] =
∫ ∞

0
dT e−im2T

∫ x(T )=x′

x(0)=x
Dx(τ ) ei

∫ T
0 dτ

[
ẋ2
4 +eẋ·A(x(τ ))

]

The (one-loop) effective action (scalar QED)

iΓ1[A] = ln Det[−(∂µ + ieAµ)2 +m2]:

iΓ1[A] =
∫ ∞

0

dT

T
e−im2T

∮
x(0)=x(T )

Dx(τ ) ei
∫ T

0 dτ
[
ẋ2
4 +eẋ·A(x(τ ))

]
.

There exist different methods for the calculation of worldline path integrals, two

of them are:

(i) Analytic Gaussian evaluation or “string-inspired” approach, based on the use of

worldline Green functions.

(ii) A direct numerical calculation of the path integral (worldline Monte Carlo).

Worldline Monte Carlo

Worldline Monte Carlo expresses the path integrals (in Euclidean space) as an

expectation value of the Wilson line → suitable for Monte Carlo!

∫ x(T )=x′

x(0)=x
Dx(τ ) e−

∫ T
0 dτ

[
ẋ2
4 +V (x(τ ))

]
=
(

1
4πT

)D
2

e− 1
4T (x−x′)2

〈
e−T

∫ 1
0 du V (x(u))

〉
,

where we have defined x(u) = x + (y − x)u +
√
Tq(u) .

We treat the expectation value as:

〈
e−T

∫ 1
0 du V (x(u))

〉
=

∫
Dq e−T

∫ 1
0 du V (x(u)) P [{q(u)}]∫

DqP [{q(u)}]
; P [{q(u)}] ∝ exp

(
−1

4

∫ 1

0
du q̇2

)
.

Worldline Monte Carlo: discrete sum overNL loops, and discretise each one at

Np proper time points:∫ x(T )=x′

x(0)=x
Dx(τ ) e−

∫ T
0 dτ

[
ẋ2
4 +V (x(τ ))

]
M.C.→ e−(x−x′)2

4T

(4πT )
D
2
N−1
L

∑NL

n=1
vi∼℘(v)

e
− T
Np

∑Np
i=1 V

(
xn( i

Np
)
)
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To illustrate the method, consider the unrenormalized Euclidean one-loop effective

action in the worldline representation, where the Wilson loop is introduced[3]:

Γ1[A] = 1
(4π)D/2

∫
dDx0

∫ ∞

1/Λ2

dT

T (D/2)+1 e
−m2T〈W 〉 + c.t.; W = e−ie

∫ T
0 dτ ẋ·A(x(τ )).

For a constant external magnetic field B = Bêz, Aµ = (0, 0, Bx, 0) = (0, Bxêy) and
in D = 4 we have:

Γ1 = 1
(4π)2

∫ ∞

1/Λ2

dT

T 3 e
−m2T

∫
d4x0

(
eBT

sinh(eBT )
− 1
)

+ c.t.; 〈W 〉 = eBT

sinh(eBT )
.
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Figure 1. Expectation value of the Wilson loop for a constant magnetic field B.

Quantummechanics

Worldline MC can provide good estimations of propagators for various systems

(for T small) and allow us to give physical ’predictions’. For systems with energies
bounded from below, the spectral decomposition of the propagator is

K(x′, x;T ) T→∞∼ ψ0(x′)ψ?0(x)e−TE0

where E0 is the ground state energy and ψn(x) :=
〈
x
∣∣Ψn

〉
are energy eigenfunc-

tions. This spoils estimation of E0 as the asymptotic gradient

E0 = − lim
T→∞

∂

∂T
ln(K(x′, x;T )).
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Figure 2. ln(K(x′, x;T )) for the Pöschl-Teller potential Vλ(x) = − α2

2m
λ(λ+1)

cosh2(αx), (E0 = −0.50004391).

Undersampling problem

Worldline MC suffers from a large time undersampling problem[4]:

Brownian motion trajectories spread as
√
Tq(u), if T >> 1 the trajectories no

longer sample the potential well.

Late time deviation from linearity ⇒ hard to estimate energies/wavefunctions.

A solution

A background potential can be subtracted directly in the path integral interaction

to favor trajectories that better sample the system[5].

K = KΩ

〈
e−

∫ T
0 dτ

[
V (x(τ ))−1

2mΩ2x2(τ )
]〉

Ω

M.C.→ KΩ
∑NL

i=1
νΩ
i ∼℘̃(v)

e−νΩ
i

Grassmann path integrals

In QFT fermions are usually treated via integrals over anti-commuting Grassmann

variables. In 1998, M. Creutz presented a method for a direct numerical evaluation

of Grassmann path integrals of the form[6]:

Z =
∫
dψNψN−1 . . . dψ1 e

S(ψ)

We implemented the Creutz algorithm for the partition function of a fermionic

harmonic oscillator as a benchmark test:

Z =
∫
A

Dψ̄Dψ e−
∫ β

0 dτ (ψ̄ψ̇+ωψ̄ψ) → e
β
2 lim
N→∞

∫ ( N∏
k=1

dψ̄kdψk

)
e

−
∑N

k=1

[
ψ̄k(ψk−ψk−1)+ β

N ψ̄kψk−1

]
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Figure 3. Estimation of Z̃(β) = e−β/2Z(β) for a fermionic harmonc oscillator (ω = 1).

Further work

We would like to directly evaluate expressions like the effective action in spinor

QED:

Γspin[A] = −1
2

∫ ∞

0

dT

T
e−m2T

∫
P

Dx e−
∫ T

0 dτ
(
ẋ2
4 +ieẋ·A(x(τ ))

)
S[x,A]

S[x,A] = trΓ P exp

[
−ie

4
[γµ, γν]

∫ T

0
dτ Fµν(x(τ ))

]
=
∫
A

Dψ e−
∫ T

0 dτ
(1

2ψµψ̇
µ−ieψµFµν(x(τ ))ψν

)

Conclusions

The WMC method has proven to be fast and efficient, generating an ensemble of

trajectories that is independent from the potential, and thus universally applicable.

However, like any other numerical method, it has limitations, such as the lost of

precision at large times. A solution for this problem has been presented only re-

cently. We intend to extend the scope of the method to be able to evaluate path

integrals with Grassmann variables in spinor QED.
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