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Abstract

We calculate the five-loop contribution to the quark bi-linear, ghost, gluon and quark field anomalous dimension for the minimal momentum subtraction (mMOM) scheme when fixed in the linear covariant
gauge. The coupling constant gauge parameter plane is then analysed for fixed points with the corresponding critical exponents evaluated. which is used to consider bounds on the conformal window.
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The mMOM Scheme

When loop corrections are included in the calculation of physical variables in quantum field
theory, unconstrained loop momenta lead to divergent integrals and infinite values for measurable
quantities. We can regularise these divergences with dimensional regularisation by setting the
number of spacetime dimensions d to 4− 2ϵ. Calculations are then renormalized by rescaling
variables such that the dependence on ϵ−n, where n > 0, is removed in all calculations so the limit
ϵ→ 0 can be taken to regain our original system. During this process the ϵ0 part can also be
modified, and the way this is done is dictated by the renormalization scheme. Due to
renormalization group invariance a measurable quantity should not be dependent on the scheme to
order in truncation.
A typical class of schemes are the MOM schemes in which the finite parts of the field

renormalization constants are defined such that there are no loop corrections to the two-point
functions when evaluated at a characteristic renormalization scale. However, this does not provide
a definition for the coupling anomalous dimension. In the mMOM scheme [1] we use
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which is defined such that the observed property that the ghost gluon vertex is finite to all orders
in the Landau gauge is extended to include a general gauge parameter α [2], where MS is a
scheme where no finite contributions are included in the renormalization constant.

Anomalous Dimensions

Renormalization introduces an unphysical renormalization scale, µ, which the fields and couplings
varying according to the equation
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where l = ln µ2

Λ2 and ϕ ∈ {A, c, ψ}. Under the structure of a scheme change, if we have the
anomalous dimension of e.g. the MS scheme to the N + 1 loop level, then we only have to
directly calculate any new one to the N loop level and use the scheme change equation
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to find it to the N + 1 loop level, where Cϕ(a, α) = ZmMOM
ϕ /ZMS

ϕ . We have calculated the
renormalization constants to the four loop level by following the definitions of the renormalization
constants for the mMOM scheme using Green’s functions from [3] and used the five-loop
calculations made for the MS scheme [4-6] to find the field and coupling anomalous dimensions in
mMOM to five loop, where the β-function had already been presented to this level in [3]. For
example the gluon field anomalous dimension is given by
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where Nf is the number of active fermions and we have truncated the lower loop orders and
presented in SU(3) and the Landau gauge (α = 0) for brevity, but have been calculated for a
general gauge parameter and group. Note the gauge parameter α runs according to the equation
dα
dl = −αγA(a, α) = αγα(a, α) for the linear covariant gauge.

Quark Mass Anomalous Dimension

In [7] the Green’s function for the quark-bilinear operator was calculated to the four-loop level
including the finite contribution. This allowed us to evaluate the five-loop anomalous dimension
for this operator. The quark-bilinear operator would describe the massive term in the Lagrangian
and is given by G = ⟨ψ(p)[ψ̄ψ](0)ψ̄(−p)⟩ with the renormalization constant given by

ψ̄0ψ0 → Zψ̄ψψ̄ψ =
Zψ̄ψ
Zψ

ψ̄0ψ0 = Zmψ̄0ψ0. (5)

Calculating the running of this operator
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Critical Exponents

The conformal window is defined as the region in which we have a number of active fermions such
that we find perturbatively accessible fixed points, where the running of the coupling constants
goes to zero

β(afp, αfp) = 0 and αfpγα(afp, αfp) = 0. (7)

The closest non-trivial fixed point to the axis in the Landau gauge is the well-known Banks-Zaks
fixed point (BZ) at aBZ [8,9] which is stable in the coupling constant direction but unstable along
the gauge-parameter direction. There is a consistent infra-red stable fixed point (IRS) at a ≈ aBZ
and α ≈ −3, found for RI′ scheme in [10]. If we evaluate the anomalous dimensions of an
operator at a fixed point we find the quantum correction to the renormalization dimension of that
operator. Below we present a collection of anomalous dimensions evaluated at these fixed points.

Nf Type γA γc γψ ρm
12 BZ 0.135918 −0.067959 −0.001749 0.309177

IRS 0 −0.123246 −0.117907 0.302656
13 BZ 0.107263 −0.053632 −0.000633 0.228539

IRS 0 −0.100243 −0.094248 0.227759
14 BZ 0.075242 −0.037621 −0.000158 0.152168

IRS 0 −0.071998 −0.066518 0.152228
15 BZ 0.043759 −0.021879 −0.000019 0.084206

IRS 0 −0.042706 −0.038808 0.084220
16 BZ 0.014178 −0.007089 0.000001 0.025902

IRS 0 −0.014073 −0.012597 0.025902

Table 1. Five loop mMOM scheme SU(3) linear covariant gauge critical exponents.

The quantity ρm = −2γm(afp, αfp) has been evaluated on the lattice for an infrared conformal
SU(3) system with Nf = 12 [11] with values of ρm = 0.235(15).

Conformal Window

A leading order approximation of the conformal window is given by 8 ≤ Nf ≤ 16 such that
β0(α) > 0 > β1(α), where β(a, α) = −a2

∑
i=0 βi(α)a

i. However, other suggestions for the lower
bound have been suggested, for example several are discussed in [12], including

ρm = 1 (8)

where ρm is evaluated at the fixed point with the smallest coupling constant value. Thus if we
consider ρm for a range of Nf we can try to the point ρm crosses these thresholds. These can be
plotted as

where we have only plotted the three- and four-loop as the two- and five-loop graphs do not cross
ρm = 1 in the minimal range. For these two values we find a boundary on the conformal window
of Nf = 9.32 from the two-loop and Nf = 8.96 from the four-loop. Repeating this for a variety of
different schemes will allow us to put a scheme error on the lower bound of the conformal window.
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