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Deconfinement on the lattice

Figure 1. Diagram of a lattice with one spatial, ns, and one periodic temporal direction, nτ . Shown in orange are the links,
Uµ(nt, ~ns) ∈ Sp(4). An example of a plaquette, Up, is shown in blue and a Polyakov loop is shown in green.

Discretise Euclidean spacetime onto a hypercubic lattice of size Ṽ = a4N3
s × Nt, with lattice spacing a

and periodic boundary conditions. When Nt is set to be � Ns, the temperature of the lattice system
is given by 1/aNt, which is changed by varying the coupling β(a). The gauge field consists of elements
of Sp(4) living on the links of the lattice, Uµ(nt, ~ns) ∈ Sp(4) ⊂ SU(4), obeying UµΩ(Uµ)T = Ω with
Ω = iσ212×2 . It is described by the standard Wilson action,

S[U ] ≡ 6Ṽ

a4 (1 − up[U ]), (1)

where U is a given configuration and up is the average plaquette, a4

6Ṽ

∑
p Up.

Deconfinement on the lattice is associated with the spontaneous breaking of the centre symmetry, for
Sp(4) this is Z2. The order parameter for this phase transition is the average Polyakov loop,
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For Sp(4), deconfinement is a first order transition. In the critical region the equilibrium energy distribu-
tion of the system will therefore exhibit the characteristic double peak structure, due to the co-existence
of phases. The structure of this energy distribution at the critical point, when the two phases are equally
likely, can be related to two important quantities when characterising first order transitions: the latent
heat, jump in energy at the critical temperature, and the surface tension, which relates to the probability
of tunneling between phases.

The density of states

We define the partition function at a coupling, β, as,

Zβ ≡
∫

[DUµ]e−βS[U ] =
∫

dEe−βE
∫

[DUµ]δ(S[U ] − E) =
∫

dEρ(E)e−βE, (3)

in the last equation we have introduced the density of states, ρ(E), which counts the number of con-
figurations with energy (action) E. Expectation values of observables with explicit dependence on the
energy, O(E), such as the average plaquette, become one-dimensional integrals over the energy,

〈O(E)〉β =
∫

dEO(E)ρ(E)e−βE. (4)

We can also directly determine the energy distribution, and therefore the plaquette distribution at a
coupling β,

Pβ(up) = 1
Zβ

ρ(E)e−βE|E=6Ṽ (1−up)/a4. (5)

LLR method

Following Ref. [3] and Ref. [4], we approximate the density of states as a piecewise log linear function in
the energy,

ln ρ(E) ≈ an(E − En) + cn. En − ∆E

4
≤ E ≤ En + ∆E

4
(6)

for n = 1, .., 2N − 1. We choose the range of energy values, E1 → E2N−1, to cover all relevant
physics.The cn coefficients are set by continuity at the boundary between intervals,

cn = ∆E

4
a1 + ∆E

2

n−1∑
k=2

ak + ∆E

4
an, c1 = 0. (7)

To find the Taylor coefficients an, we will solve the equation,
〈〈E − En〉〉n(an) = 〈〈up − (up)n〉〉n(an) = 0 (8)

where En is the centre of the energy interval and the (up)n is the corresponding plaquette value, 1 −
Ena4/6Ṽ . The double angle bracket 〈〈...〉〉n(an) indicates the expectation value of configurations at a
coupling an, for configurations restricted to the nth energy interval. We solve this equation iteratively
using the Robbins-Monro method,

a
(m+1)
n = a

(m)
n − 12

∆2
E

〈〈E − En〉〉n(a(m)
n ), (9)

starting with some initial guess of a
(1)
n . If we take m → ∞, we will gain the true an value, however in

practise this is not possible. The iterations are therefore truncated, introducing a systematic error, which
is estimated by repeating the calculation and treating the resulting error statistically.
Once the coefficients, an, have been calculated we can now compute the density of states, ρ(E), with
Eq. 6. Using this we can reconstruct the plaquette distribution with Eq. 5. In the top plot of Fig. 2 we
show the an coefficients against (up)n, and the lower plot shows the plaquette distribution at the critical
coupling. The dashed horizontal line in the top figure shows the line when an = β, the vertical lines show
corresponding (up)n values. Through continuum extrapolations, the difference between the two peaks
of the plaquette distribution, ∆〈up〉, can be related to the latent heat of the continuum theory[5]. The
non-invertible structure of the function an((up)n) leads to the double peak structure of the plaquette
distribution.

Figure 2. Results for Sp(4) gauge theory on a 4 × 203 lattice with 20 repeats.

Free energy

In analogy with statistical physics we can define a free energy, F , temperature, t and entropy, s,

F (t) ≡ E − ts, s ≡ ln ρ t ≡ ∂E

∂s
≡ 1

an
, f (t) ≡ a4

Ṽ
(F (t) + Σt). (10)

We have also introduced a reduced free energy f (t), defined to remove dependence on the arbitrary c1
term in our ansatz of ρ(E). The free energy can be related to the peaks of the probability distribution
through the equation,

e−F (t)
t = ZβPβ(E)|β=1/t,E=F (t)+ts. (11)

In Fig. 3, we plot the reduced free kenergy against temperature. It demonstrates the swallow tail structure,
characteristic of a first order transition. The plot has three distinct regions, the black lines shows the
regime in which only one solution is present. The blue and red lines shows the (meta-)stable and unstable
regions respectively.
The point at which the two (meta-)stable branches cross corresponds to the critical temperature tc =
1/βc. The difference in free energy between the (meta-)stable and unstable regimes at the critical
temperature, ∆f (tc), can be related through infinite volume and continuum extrapolations to the surface
tension of the transition[5]. This can also be directly related to the plaquette distribution at the critical
point through − ln(Pmin/Pmax) = (Ṽ /a4)∆f (tc)/tc, where Pmax and Pmin are the height of the
maxima and the central minima respectively.

Figure 3. Sp(4) gauge theory on a 4 × 203 lattice with 20 repeats, from Ref. [2].
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