Self-Healing Distributed Networks DAFNI at Durham

2023

Amitabh Trehan Computer Science Durham University

Healing!

Courtesy: <u>https://www.dreamstime.com</u> (royalty free)

Networks ... are

everywhere

t 🔂 in

heland Ecological

Transport
Nature
Biology
Ecology
Society
Society
Chemistry
Etc etc ...

Combinatorics ~ almost anything which has objects relating to each other!

- Centralised Algorithms: Single computer with the whole problem instance/data available
- Distributed Algorithms: `Network' of computers with each having only local view

Distributed in a `faulty/ dynamic' environment

Solution States Stat

Q: Which one of <u>us</u> will get the printer despite failures or changes (e.g. in a self-healing manner)

The(A) Distributed Matrix...

Architecture	Message Passing (Point-to-Point, Broadcast)	Sensor, Wireless, Reconfigurable, Overlay, Cloud	Shared Memory
Timing	Synchronous	Partial	Asynchronous
Identity	Anonymous	ID	
Knowledge	Local (Own + neighbour IDs), + size, dia estimates?	Restricted	Global
Local Memory	Unlimited	SuperLinear, Linear, Logarithmic	Constant
Bandwidth	LOCAL (Unlimited)	CONGEST (polylog)	?
Failure	Crash (node)	Edge, Memory, Transient	Byzantine
Behaviour	Obedient!	Selfish (Game Theory)	Byzantine

Self-healing

- A self-healing system, starting from a correct state, under attack from an adversary, goes only temporarily out of a correct state.
- Under attack, maintain certain properties within acceptable bounds.

Main self-healing themes

- Resilient Distributed Architectures by Self-healing (~P2P topology maintenance)
- > Low Memory devices: Compact Routing over Compact Self-healing Networks ~ Internet of Things
- Under Investigation: Self-Healing Software Defined Networks, Social resilience (e.g. Terror networks) etc...

How to self-heal?

Brain: component fails, brain rewires and does without it

Computer networks: components fail, network fails until components fixed.

Autonomic Computing

- > IBM's autonomic computing initiative
- > Nature and Bio-inspired

> Self-CHOP

An autonomic system

Self-managing:
Self-configuring
Self-healing
Self-optimizing
Self-protecting

Self-healing model (a game on graphs!)

Start: a distributed network G

Attack action: An adversary inserts or deletes one node per round

Healing action: After each adversary action, we <u>add and/or drop some edges</u> between pairs of nearby nodes, to "heal" the network

Possible healing topologies:

Line Graph

Low degree increase but diameter/ distances blow up

Possible healing topologies:

Star Graph

Low distances but degree blows up

Challenge 1: properties conflict

> Low degree increase => high diameter/stretch/ poorer expansion?
> Low diameter => high degree increase?

Challenge 2: local fixing of global properties

Limited global Information with nodes
Limited resources and time constraint

A series of unfortunate events N=100 [DASH, IPDPS 2008]

N=10

Self-healing (topological) Goals

- > Healing should be fast.
- Certain (topological etc...) properties should be maintained within bounds:
 - Connectivity
 - Degree (quantifies the work done by algorithm)
 - Diameter/ Stretch
 - > Expansion/ Spectral properties
 - Add your own>....
- Cost Metrics: Time, #messages per healing and change in properties (dilation) over lifetime.

A Self-healing System

- System: a responsive reconfigurable system
- Attack action: An adversary <attacks>
- Healing action: After each adversary action, we <u><repair></u> locally (and quickly)!

Self-healing Goals

- > Healing should be <u>fast.</u>
- Fault Tolerant: Certain properties should be maintained within bounds
 - Clist the properties
- Cost Metrics: Costs per healing and change in properties (dilation) over lifetime.

Our Self-healing Algorithms

Non-Virtual

Virtual

pbfcomics.com (apologies, Silverstein)

Thank You

Questions and future work

- Empirical studies: Beyond model assumptions, multiple failures (varying proximities), cascading failures, high churn, restricted rules, topologies
- > What is the best way to analyse fully node dynamic algorithms (say, selfhealing graphs)?
- > Load-balanced self-healing: Chord like structures? Small world models?
- > Extend model and algorithms to multiple failures, sensor networks etc.
- > `Behavioural' Self-healing
- Can edge dynamic temporal theory help? In some use cases, possibly node dynamic are contained in Edge dynamic!
- > Temporal self-healing and memory constrained Processes? Routing* etc...
- A general theory for dynamicity routing schemes as compositions/ operators on self-healing networks