

Maximally supersymmetric Yang–Mills in three dimensions David Schaich and Angel Sherletov (University of Liverpool)

Phase diagram from lattice calculations

System: Naive dimensional reduction of maximal super-Yang–Mills (4d $\mathcal{N} = 4$ SYM) [arXiv:2010.00026] Richer dynamics than 2d [arXiv:2312.04980], computationally cheaper than 4d [arXiv:2304.04655]

Goal: Map 'spatial deconfinement' transition [dual to black brane / black hole] from high-temperature 2d bosonic theory to low-temperature holographic regime

Dim'less torus size $r_L \times r_L \times r_T \longrightarrow aspect ratio \alpha = r_L/r_T$

Dim'less temperature $T = 4/(r_T\sqrt{3})$ [skewed 3-torus]

Fix gauge group U(8) and $N_T = 8$ $\longrightarrow \alpha = 2, 2.5, 3, 4$ from $N_L = 16, 20, 24, 32$

Preliminary results consistent with holographic expectation

 $r_L^{3/2} \propto r_T \longrightarrow T_c \propto \alpha^3$

Transition observables

Magnitude of spatial Wilson line (WL) Large for high-*T* deconfined phase Vanishes for low-*T* confined (in large-*N* limit)

WL eigenvalue distribution

Transition signals

T_c from peaks in WL magnitude susceptibility

Localized for high-*T* deconfined phase Homogeneous for low-*T* confined (large-*N*)

Larger aspect ratio (larger spatial volume) \longrightarrow higher T_c \longrightarrow harder to stabilize lattice system

30 July

Critical scaling needs U(N) with larger N > 8

More technical details of the lattice system

Twisted formulation preserves two (of 16) supersymmetries at non-zero lattice spacing Requires A_3^* (body-centered cubic) lattice \rightarrow skewed 3-torus [arXiv:2010.00026]

16 fermions \longrightarrow 2 site { η , ψ_5 } + 8 link { ψ_a , χ_{5a} } + 6 plaquette { χ_{ab} }

Gauge field A_{μ} + 7 scalars \longrightarrow complexified $\{\mathcal{U}_5, \overline{\mathcal{U}}_5\} + \{\mathcal{U}_a, \overline{\mathcal{U}}_a\} \longrightarrow U(N)$ gauge invariance

- Use 't Hooft coupling λ to define dim'less $r_T = \beta \lambda$ and $r_L = \alpha \beta \lambda$
- Fixed torus size \longrightarrow larger lattice volumes produce smaller lattice spacing *a* and smaller $\lambda_{lat} = a\lambda$
- Soft-supersymmetry-breaking scalar potential $\propto \lambda_{\text{lat}}$ needed to stabilize RHMC lattice calculations
- Future work to adapt gradient flow to naive dimensional reduction $[1 \times N_L \times N_L \times N_T]$ lattices]

