Recent highlights from the LHCb experiment

Mark Whitehead On behalf of the LHCb collaboration

Science and Technology Facilities Council University of Glasgow

29/07/2024

Lattice 2024 - University of Liverpool - 29th July

Arnau Brossa Gonzalo (1993-2024)

- Designed to study weak decays of heavy hadrons
 - Excellent track and vertex resolution provides high purity samples (>90%) easily for fully reconstructed decays
- Heavy hadrons decay into almost infinite final states
 - Study those decay products in a quasi-background free environment

Lepton flavour universality

- Anomalies seen in ratios of decay rates of semi-leptonic decays
 - For beauty hadron decays

- Latest LHCb result focuses on $R(D^+)$ and $R(D^{*+})$
 - Dataset from 2015+2016
- Processes included
 - $$\begin{split} B &\to D^+ \mu^- \nu_\mu \\ B &\to D^+ \tau^- (\to \mu^- \bar{\nu}_\mu \nu_\tau) \nu_\tau \\ B &\to D^{*+} (\to D^+ \pi^0) \mu^- \nu_\mu \\ B &\to D^{*+} (\to D^+ \pi^0) \tau^- (\to \mu^- \bar{\nu}_\mu \nu_\tau) \nu_\tau \end{split}$$

The reconstructed final state is always $D^+\mu^-!$

- Latest LHCb result focuses on $R(D^+)$ and $R(D^{*+})$
 - Dataset from 2015+2016
- Processes included
 - $$\begin{split} B &\to D^+ \mu^- \nu_\mu \\ B &\to D^+ \tau^- (\to \mu^- \bar{\nu}_\mu \nu_\tau) \nu_\tau \\ B &\to D^{*+} (\to D^+ \pi^0) \mu^- \nu_\mu \\ B &\to D^{*+} (\to D^+ \pi^0) \tau^- (\to \mu^- \bar{\nu}_\mu \nu_\tau) \nu_\tau \end{split}$$

The reconstructed final state is always $D^+\mu^-!$

29/07/2024

Lepton flavour universality

- Tension remains around 3σ
 - Results complimentary to those using D^0 mesons $R(D^0) = 0.441 \pm 0.060 \pm 0.066$ $R(D^*) = 0.281 \pm 0.018 \pm 0.023$
- Work in progress
 - Lots more to come from Run 1&2
 - Full Run2 updates
 - Angular analyses
 - New modes from LHCb

$$\begin{array}{ccc} B^- \to \rho^0 \mu^- \bar{\nu}_\mu & \Lambda \to p \mu^- \bar{\nu}_\mu \\ & B_c^- \to D^0 \mu^- \bar{\nu}_\mu \end{array}$$

$$R(D^{+}) = 0.249 \pm 0.043 \pm 0.047$$

$$R(D^{*+}) = 0.402 \pm 0.081 \pm 0.085$$

$$R(D^{*+}) = 0.287 \pm 0.026$$

$$R(D^{*+}) = 0.287 \pm 0.004$$

arXiv:2406.03387 [hep-ex]

8

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decays

- Electronic version is the famous mode
 - Investigate the discrepancies seen in the muonic mode with electrons
 - Previous results from Belle for this channel

• Angular distributions
$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + F_L \cos^2 \theta_K + F_L \cos^2 \theta_K \sin^2 \theta_K \cos^2 \theta_K + \frac{1}{4} (1 - FL) \sin^2 \theta_K \cos^2 \theta_K + \frac{1}{4} (1 - FL) \sin^2 \theta_K \cos^2 \theta_K \sin^2 \theta_K \sin^2 \theta_K \cos^2 \theta_K \sin^2 \theta_K \cos^2 \theta_K + \frac{1}{4} \sin^2 \theta_K \sin^2 \theta_K \cos^2 \theta_K \sin^2 \theta_K \cos^2 \theta_K \sin^2 \theta_K \cos^2 \theta_K + \frac{1}{4} A_{FB} \sin^2 \theta_K \cos^2 \theta_K + \frac{1}{4} A_$$

• ϕ angle between the dielectron and K* decay planes

$$+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$$

For more details see R. Silva Coutinho's ICHEP talk

LHCb-PAPER-2024-022

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decays

- Use kinematic refit to improve resolution
 - Fix B mass to the measured value
 - Constrain the momentum vector to point to primary vertex
- Define signal region
 - Default $1.1 6.0 \text{ GeV}^2/c^4$
 - Extended $1.1 7.0 \text{ GeV}^2/c^4$
- Perform fit to B mass distribution and decay angles

29/07/2024

LHCb-PAPER-2024-022

Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ decays

$\frac{S_{7} - 0.077 \pm 0.056 \pm 0.038}{A_{10}} P_{6}^{*} = -0.155 \pm 0.114 \pm 0.092} K^{*0}e^{+}e^{-} decays$

ernari, iv	I. Reboud, D. Van Dyk, J.	VIRO, JHEP U	$19(2022)_{133} e_{133}$	s Q_i . calculated	using t	he <i>P</i> -basis angular •••		
eró A F	Biswas B Candevila S De	escotes-Geno	D GEV / C	JC 83 (2023) 7 648 rr	o r hars s	show statistical and		
$F_{ m L}$	0.582 ± 0.045	± 0.050	(1			$-0.146 \pm 0.052 \pm 0.035$	P_2	$-0.232 \pm 0.083 \pm 0.112$
uncei	$\begin{array}{c} \text{tainfies. The SM} \\ -0.000 \pm 0.042 \end{array}$	$\frac{\text{prediction}}{40.023}$	$P_1^{\text{orange b}}$	(2000) are based (2000) are based (2000)	on Ref. [21.0.077 + 0.056 + 0.038	P_c^{\prime}	$-0.155 \pm 0.114 \pm 0.092$
~ 3 S_{\perp}	-0.110 ± 0.073	± 0.020 ± 0.042	P' = 0.24	$2 \pm 0.202 \pm 0.210$ $2 \pm 0.148 \pm 0.120$	S_{0}	$0.129 \pm 0.072 \pm 0.056$	$\frac{-6}{P'}$	$0.262 \pm 0.146 \pm 0.137$
\mathcal{D}_4	-0.119 ± 0.075	± 0.042	$I_4 = 0.242$	$2 \pm 0.140 \pm 0.120$	D_8	$0.125 \pm 0.012 \pm 0.050$	1 8 D	$0.202 \pm 0.140 \pm 0.131$
S_5	-0.077 ± 0.054 :	± 0.033	$P'_{5} = -0.157$	$7 \pm 0.110 \pm 0.102$	S_9	$0.066 \pm 0.045 \pm 0.020$	P_3	$-0.157 \pm 0.107 \pm 0.110$

29/07/2024

LHCb-PAPER-2024-022

2.

Spectroscopy - Introduction

Introduction

29/07/2024

- Decays of B mesons to double charm final states now very popular
 - Following the discovery of new particles in $B^+ \rightarrow D^+ D^- K^+$ decays
- Isospin partner decays analysed together
 - Expect standard excited charm mesons in the $\overline{D}{}^0\pi^-$ and $D^-\pi^+$ channels
 - Anything else would likely be an exotic candidate

- Now need to perform an amplitude analysis
 - Take just the candidates from the signal regions and fix the yields
 - Include amplitudes for every sub-process that may contribute, starting with known/standard resonances

-	Resonance	J^P	Mass (GeV)	Width (GeV)	Comments
_	$\overline{D}^{*}(2007)^{0}$	1-	2.00685 ± 0.00005	$<2.1\times10^{-3}$	Width set to be $0.1 \mathrm{MeV}$
	$D^{*}(2010)^{-}$	1-	2.01026 ± 0.00005	$(8.34 \pm 0.18) \times 10^{-5}$	
K	$\overline{D}_{0}^{*}(2300)$	0^+	2.343 ± 0.010	0.229 ± 0.016	#
	$\overline{D}_{2}^{*}(2460)$	2^{+}	2.4611 ± 0.0007	0.0473 ± 0.0008	#
	$\overline{D}_{1}^{*}(2600)^{0}$	1-	2.627 ± 0.010	0.141 ± 0.023	#
	$\overline{D}_{3}^{*}(2750)$	3-	2.7631 ± 0.0032	0.066 ± 0.005	#
	$\overline{D}_{1}^{*}(2760)^{0}$	1-	2.781 ± 0.022	0.177 ± 0.040	#
_	$\overline{D}_J^*(3000)^0$??	3.214 ± 0.060	0.186 ± 0.080	$\# J^P = 4^+$ is assumed

29/07/2024

- Projections from the fit with the list of known excited charm mesons
 - Full $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ dataset combining D decays and run periods
 - Good fit to data in the $\overline{D}{}^0\pi^-$ projection (left)
 - Some possible deficiencies in the $D_s^+\pi^-$ projection (centre)

29/07/2024

- Perform a simultaneous fit
 - Assuming isospin symmetry to relate the two states

 $T^a_{c\bar{s}0}(2900)^0: M = (2.892 \pm 0.014 \pm 0.015) \text{ GeV},$ $\Gamma = (0.119 \pm 0.026 \pm 0.013) \text{ GeV},$

Observed with 8σ significance

 $T^a_{c\bar{s}0}(2900)^{++}: M = (2.921 \pm 0.017 \pm 0.020) \text{ GeV},$ $\Gamma = (0.137 \pm 0.032 \pm 0.017) \text{ GeV},$

Observed with 6.5σ significance

29/07/2024

Amplitude analysis of $B^+ \rightarrow D^{*-}D_s^+\pi^+$ decays

- Very recent paper from LHCb
 - Do we see the $T_{c\bar{s}0}(2900)^{++}$ state?
 - About 850 events in the signal region, analysis strategy ~as before

Amplitude

- Very recent paper from
 - Do we see the $T_{c\bar{s}0}(290)$
 - Region of interest dom
 - No evidence for the te
 - Fit fraction for $T_{c\bar{s}0}(2900)^{++}$

(0.03 GeV)

30

Entries _

10

3.0

2.5

 $9 {\rm ~fb^{-1}}$

- Study resonant structures in $B^+ \rightarrow D^{*+}D^-K^+, B^+ \rightarrow D^{*-}D^+K^+$ decays
 - Again motivated by tetraquark observations in $B^+ \rightarrow D^+ D^- K^+$ decays
 - Interest to study this family of tetraquarks further!
- Simultaneous analysis of the two final states
 - Expect charmonium(-like) contributions to be equal in both (C conservation)
- Use the full Run 1 + Run 2 data sample from LHCb
 - Find 1636 ± 43 decays in $B^+ \rightarrow D^{*+}D^-K^+$ sample
 - Find 1772 ± 44 decays in $B^+ \rightarrow D^{*-}D^+K^+$ sample
 - Purity in both modes around 95%

- Study resonant structures in $B^+ \rightarrow D^{*+}D^-K^+, B^+ \rightarrow D^{*-}D^+K^+$ decays
 - Baseline model
 - New charmonium(-like) states
 - Tetraquarks seen in one channel
 - $T_{c\bar{s}0}(2870)^0$ forbidden in $B^+ \rightarrow D^{*-}D^+K^+$ and the spin-1 state not seen

Component	$\mathbf{T}P(C)$	Fit fraction [%]	Fit fraction [%]	Branching fraction
Component	J ()	$B^+ \rightarrow D^{*+}D^-K^+$	$B^+ \rightarrow D^{*-}D^+K^+$	$[10^{-4}]$
$\mathrm{EFF}_{1^{++}}$	1^{++}	$10.9 {}^{+2.3}_{-1.2} {}^{+1.6}_{-2.1}$	$9.9 {}^{+2.1}_{-1.0} {}^{+1.4}_{-1.9}$	$0.74^{+0.16}_{-0.08}{}^{+0.11}_{-0.14}\pm0.07$
$\eta_c(3945)$	0^{-+}	$3.4^{+0.5}_{-1.0}{}^{+1.9}_{-0.7}$	$3.1^{+0.5}_{-0.9}{}^{+1.7}_{-0.6}$	$0.23^{+0.04}_{-0.07}{}^{+0.13}_{-0.05}\pm0.02$
$\chi_{c2}(3930)^{\dagger}$	2^{++}	$1.8 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.2}$	$1.7 {}^{+0.5}_{-0.4} {}^{+0.6}_{-1.1}$	$0.12^{+0.03}_{-0.03}{}^{+0.04}_{-0.08}\pm0.01$
$h_c(4000)$	1^{+-}	$5.1^{+1.0}_{-0.8}{}^{+1.5}_{-0.8}$	$4.6^{+0.9}_{-0.7}{}^{+1.4}_{-0.7}$	$0.35^{+0.07}_{-0.05}{}^{+0.10}_{-0.05}\pm0.03$
$\chi_{c1}(4010)$	1^{++}	$10.1 {}^{+1.6}_{-0.9} {}^{+1.3}_{-1.6}$	$9.1^{+1.4}_{-0.8}{}^{+1.2}_{-1.4}$	$0.69^{+0.11}_{-0.06}{}^{+0.09}_{-0.11}\pm0.06$
$\psi(4040)^{\dagger}$	1	$2.8 {}^{+0.5}_{-0.4} {}^{+0.5}_{-0.5}$	$2.6^{+0.5}_{-0.4}{}^{+0.4}_{-0.5}$	$0.19^{+0.04}_{-0.03}{}^{+0.03}_{-0.03}\pm0.02$
$h_{c}(4300)$	1^{+-}	$1.2^{+0.2}_{-0.3}{}^{+0.2}_{-0.2}$	$-1.1 \substack{+0.2 \\ -0.5 \\ -0.2}$	$0.08^{+0.01}_{-0.03}{}^{+0.02}_{-0.01}\pm0.01$
$T^*_{\bar{c}\bar{s}0}(2870)^{0.1}$	0^{+}	$6.5^{+0.9+1.3}_{-1.2-1.6}$	-	$0.45^{+0.06}_{-0.08}{}^{+0.09}_{-0.10}\pm0.04$
$T^*_{\bar{c}\bar{s}1}(2900)^{0\dagger}$	1^{-}	$5.5^{+1.1}_{-1.5}{}^{+2.4}_{-1.6}$	- /	$0.38^{+0.07}_{-0.10}{}^{+0.16}_{-0.11}\pm0.03$
$\overline{\mathrm{NR}_{1^{}}(D^{*+}D^{\pm})}$	1	$20.4_{-0.6}^{+2.2}$	$18.5 \substack{+2.1 + 1.9 \\ -0.5 - 2.3}$	$1.39^{+0.16}_{-0.04}{}^{+0.14}_{-0.17}\pm0.12$
$\mathrm{NR}_{0^{}}(D^{*\mp}D^{\pm})$	$0^{}$	$1.2 {}^{+0.6}_{-0.1} {}^{+0.7}_{-0.6}$	$1.1 {}^{+0.6}_{-0.1} {}^{+0.6}_{-0.5}$	$0.08^{+0.04}_{-0.01}{}^{+0.05}_{-0.04}\pm0.01$
$\mathrm{NR}_{1^{++}}(D^{*\mp}D^{\pm})$	1^{++}	$17.8 {}^{+1.9}_{-1.4} {}^{+3.6}_{-2.6}$	$16.1^{+1.7}_{-1.3}{}^{+3.3}_{-2.3}$	$1.21^{+0.13}_{-0.10}{}^{+0.24}_{-0.17}\pm0.11$
$\mathrm{NR}_{0^{-+}}(D^{*\mp}D^{\pm})$	0^{-+}	$15.9^{+3.3}_{-1.2}{}^{+3.3}_{-3.3}$	$14.5^{+3.0}_{-1.1}{}^{+3.0}_{-3.0}$	$1.09^{+0.23}_{-0.08}{}^{+0.22}_{-0.23}\pm 0.09$

• Study resonant structures in $B^+ \rightarrow D^{*+}D^-K^+$, $B^+ \rightarrow D^{*-}D^+K^+$ decays

- Study resonant structures in $B^+ \rightarrow D^{*+}D^-K^+, B^+ \rightarrow D^{*-}D^+K^+$ decays
 - Tetraquark candidates in fair agreement with previous results
 - Seems to be a difference in the ratio of the two states in this final state

Property	This work	Previous work	
$T^*_{\bar{c}\bar{s}0}(2870)^0$ mass [MeV]	$2914 \pm 11 \pm 15$	2866 ± 7	11-
$T^*_{\bar{c}\bar{s}0}(2870)^0$ width [MeV]	$128 \pm 22 \pm 23$	57 ± 13	110
$T^*_{\bar{c}\bar{s}1}(2900)^0$ mass [MeV]	$2887\pm8\pm6$	2904 ± 5	010
$T^*_{\bar{c}\bar{s}1}(2900)^0$ width [MeV]	$92\pm16\pm16$	110 ± 12	9.10
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm0.4)\times10^{-5}$	$(1.2 \pm 0.5) \times 10^{-1}$	-5
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7}_{-1.0}{}^{+1.6}_{-1.1}\pm0.3)\times10^{-5}$	$(6.7 \pm 2.3) \times 10^{-1}$	-5
$\frac{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2870)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05	

	$\eta_c(3945)$	$h_{c}(4000)$	$\chi_{c1}(4010)$	and $h_{c}(4300)$
Consistent with X(3940)	10σ	9.1 <i>σ</i>	16 0	6.4 <i>o</i>
Seen by Delle	0-+	1+-	1++	1+-

29/07/2024

arXiv:2406.03156 [hep-ex]

Looking forwards - my two cents

- We need to understand the structure of exotic particles
 - With four and five quark states, how are the quarks arranged?
- Discovering them pseudo-randomly is a good start...
 - Perhaps it is time for a more focused, systematic, approach
 - Focus on related states and look for any more possible partners e.g.

$$T_{cs0}(2900)^{0} \qquad T_{c\bar{s}0}^{a}(2900)^{0} \qquad c\bar{s}\bar{u}d$$

$$T_{cs1}(2900)^{0} \qquad T_{c\bar{s}0}^{a}(2900)^{++} \qquad c\bar{s}u\bar{d}$$

$$cs\bar{u}d$$

• Make sure we focus equally on final states they do not decay to

LHCb Upgrade - Run 3

- Data pouring in as we speak at point 8!
 - Effect of the upgrade is clear to see!
 - Already collected about twice as much data as our previous record year
- Detector performing well
 - Removal of hardware trigger gives and extra factor of ~2 improvement for hadronic decays
- Lots to look forward to!

Upgrade I

- LHCb physics programme not limited by the LHC
 - Ambitious future upgrades plan

- Peak luminosity $1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Integrated luminosity ~ $300 \, \text{fb}^{-1}$
 - For Run 5 + 6
- Full new detector required!
- Install during LS4
- Smaller detector consolidation and enhancements during LS3

Summary

- Lots of exciting results still coming in from the Run 1 and 2 data set
 - Only a small selection of topics covered today
- Exploitation of Run 3 data for physics analysis to ramp up
 - Data coming in at an unprecedented rate for LHCb
- Reminder of the annual LHCb implications workshop
 - The 2024 addition will be Wednesday 23rd Friday 25th October
 - Theorists welcome!

Unfortunately I can only attend the conference today, so please find me at lunch or coffee if you have any additional comments/questions or requests!

03/07/2024

×10°

 $\operatorname{GeV}_{0.045}^{2/c}$

∞ 0.02 0.025

Candidates Candidates

0.02

Control region with an additional charged pion added

Sample enriched with excited charm meson contributions

LHCb

 $2 \, \text{fb}^{-1}$

×10°

2 fb⁻¹

10

LHCb

29/07/2024

29/07/2024

- Control of systematic uncertainties crucial with such large samples
 - Dataset from 2015+2016
- Largest sources
 - Form factors
 - Background fractions
- Finally we get $R(D^+) = 0.249 \pm 0.043 \pm 0.047$ $R(D^{*+}) = 0.402 \pm 0.081 \pm 0.085$

Source	$R(D^+)$	$R(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.085
Statistical uncertainty	0.043	0.081

Results from D^0 decays PRL 131, 111802 (2023) $R(D^0) = 0.441 \pm 0.060 \pm 0.066$ $R(D^*) = 0.281 \pm 0.018 \pm 0.023$

29/07/2024

Angular analysis of
$$B^0 \rightarrow K^{*0}e^+e^-$$
 decays

- Compare each variable with the muon results PRL 132 (2024) 131801
 - Consistent with lepton flavour universality

$$Q_i = P_i^{(\mu)} - P_i^{(e)}$$

29/07/2024

[Belle Collaboration PRI 118 (2017) 11180

- Three data samples initially

 - $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ with $\overline{D}{}^0 \to K^+ \pi^ B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ with $\overline{D}{}^0 \to K^+ \pi^- \pi^+ \pi^ B^+ \to D^- D_s^+ \pi^+$ with $D^- \to K^+ \pi^- \pi^-$
- Analysis uses the full Run 1 + Run 2 data sample of 9fb^{-1}
- Standard selections
 - Combinatorial background suppressed using a BDT (boosted decision tree)
 - Non-charm background surpassed with flight distance cuts

29/07/2024

- Decays of B mesons to double charm final states now very popular
 - Following the discovery of new particles in $B^+ \rightarrow D^+ D^- K^+$ decays
- Isospin partner decays analysed together
 - Expect standard excited charm mesons in the $\overline{D}{}^0\pi^-$ and $D^-\pi^+$ channels
 - Anything else would likely be an exotic candidate
 - E.g. Z_{cs} tetraquark candidates seen to decay to $\overline{D}*D_s^+$, $\overline{D}D_s^{*+}$ and $J/\psi K$
 - Motivation to search in the $D_s^+\pi^-$ and $D_s^+\pi^+$ from theory side in analogy to $T_{cs(0,1)}(2900)^0$ candidates in the D^-K^+ system

- Firstly need to measure $\tilde{\mathfrak{S}}$ •
 - Separate fits for the thr
 - Double Crystal Ball func
 - Exponential function fo

Candidates / (5.0 MeV)

.0 MeV

150

100

50

5300

5400

I Doto

150

Candidates / (5.0 MeV)

- Fit results
 - Full results in the backup slides
 - Focus here on the yields in the signal region of $\pm 20 \,\mathrm{MeV}/c^2$ around the B mass
 - Corresponds to about 2.5-3 times the mass resolution

Decay	Parameter	Run 1	Run 2	-
	Signal yield	564 ± 26	2534 ± 55	-
$B^0 \to \overline{D}^0_{K\pi} D^+_s \pi^-$	Total candidates	633	2753	
	Purity	89.1%	92.1%	
	Signal yields	177 ± 14	734 ± 31	~4k signal candidates
$B^0 \to \overline{D}^0_{K3\pi} D^+_s \pi^-$	Total candidates	199	835	per channel
	Purity	88.9%	87.9%	
	Signal yield	766 ± 29	2984 ± 57	-
$B^+ \rightarrow D^- D_s^+ \pi^+$	Total candidates	797	3143	
	Purity	96.1%	94.9%	_

29/07/2024

Decay	Parameter	Run 1	Run 2
	Signal yield	587 ± 27	2641 ± 57
$B^0 \to \overline{D}^0_{K\pi} D^+_s \pi^-$	B_s^0 signal	25.3 ± 8.3	77 ± 15
	Background yield	421 ± 26	1440 ± 49
	Mean (MeV)	5279.12 ± 0.38	5279.16 ± 0.18
	Width (MeV)	7.89 ± 0.35	7.73 ± 0.17
	Exponential slope	$-(3.08\pm0.52)\times10^{-3}$	$-(2.98\pm0.29)\times10^{-3}$
	Signal yield	185 ± 15	759 ± 32
$B^0 \to \overline{D}^0_{K3\pi} D^+_s \pi^-$	B_s^0 signal	4.9 ± 4.6	38 ± 11
	Background yield	136 ± 14	692 ± 33
	Mean (MeV)	5277.98 ± 0.70	5278.79 ± 0.34
	Width (MeV)	8.01 ± 0.59	7.72 ± 0.33
	Exponential slope	$-(2.56\pm0.90)\times10^{-3}$	$-(3.03\pm0.41)\times10^{-3}$
	Signal yield	798 ± 30	3123 ± 59
$B^+ \rightarrow D^- D_s^+ \pi^+$	Background yield	311 ± 21	1201 ± 40
	Mean (MeV)	5278.88 ± 0.33	5278.74 ± 0.16
	Width (MeV)	8.08 ± 0.30	8.05 ± 0.14
	Exponential slope	$-(0.82\pm0.61)\times10^{-3}$	$-(0.90\pm0.31) imes10^{-3}$

- Projections from the fit with the list of known excited charm mesons
 - Full $B^+ \rightarrow D^- D_s^+ \pi^+$ dataset combining D decays and run periods
 - Good fit to data in the $D^-\pi^+$ projection (left)
 - Some possible deficiencies in the $D_s^+\pi^+$ projection (centre)

29/07/2024

• Have a look at the fit quality

29/07/2024

- Since the problem seems to be in the $D_s^+\pi$ projections
 - Try adding one state per decay mode
 - No relation between them assumed
 - Float mass, width and spin
- Both data sets prefer a spin-0 resonance at $2900 \,\mathrm{MeV}/c^2$

29/07/2024

- Have a look at the fit quality
 - Quite a bit of strong colour in the area flagged previously

29/07/2024

• Study resonant structures in $B^+ \rightarrow D^{*+}D^-K^+, B^+ \rightarrow D^{*-}D^+K^+$ decays

This v	vork	Known sta	ates [6]	$c\bar{c}$ predic	tion [34]
$\eta_c(3945)$	$J^{PC} = 0^{-+}$	X(3940) [9,10]	$J^{PC} = ?^{??}$	$\eta_c(3S)$	$J^{PC} = 0^{-+}$
$m_0 = 3945 {}^{+28}_{-17} {}^{+37}_{-28}$	$\Gamma_0 = 130^{+92}_{-49}{}^{+101}_{-70}$	$m_0 = 3942 \pm 9$	$\Gamma_0 = 37 {}^{+27}_{-17}$	$m_0 = 4064$	$\Gamma_0 = 80$
$h_c(4000)$	$J^{PC} = 1^{+-}$	$T_{c\bar{c}}(4020)^0$ [35]	$J^{PC} = ?^{?-}$	$h_c(2P)$	$J^{PC} = 1^{+-}$
$m_0 = 4000 {}^{+17}_{-14} {}^{+29}_{-22}$	$\Gamma_0 = 184 {}^{+71}_{-45} {}^{+97}_{-61}$	$m_0 = 4025.5^{+2.0}_{-4.7} \pm 3.1 \ \Gamma$	$\Gamma_0 = 23.0 \pm 6.0 \pm 1.0$	$m_0 = 3956$	$\Gamma_0 = 87$
$\chi_{c1}(4010)$	$J^{PC} = 1^{++}$			$\chi_{c1}(2P)$	$J^{PC} = 1^{++}$
$m_0 = 4012.5 +3.6 \\ -3.9 \\ -3.7 \$	$\Gamma_0 = 62.7^{+7.0}_{-6.4}{}^{+6.4}_{-6.6}$			$m_0 = 3953$	$\Gamma_0 = 165$
$h_c(4300)$	$J^{PC} = 1^{+-}$			$h_c(3P)$	$J^{PC} = 1^{+-}$
$m_0 = 4307.3^{+6.4}_{-6.6}{}^{+3.3}_{-4.1}$	$\Gamma_0 = 58 {}^{+28}_{-16} {}^{+28}_{-25}$			$m_0 = 4318$	$\Gamma_0 = 75$
		$\chi_c(4274)$ [36]	$J^{PC} = 1^{++}$	$\chi_{c1}(3P)$	$J^{PC} = 1^{++}$
		$m_0 = 4294 \pm 4^{+6}_{-3}$	$\Gamma_0 = 53 \pm 5 \pm 5$	$m_0 = 4317$	$\Gamma_0 = 39$

 $\eta_c(3945), h_c(4000), \chi_{c1}(4010) \text{ and } h_c(4300)$

10σ	9.1 <i>o</i>	16σ	6.4σ
0^{-+}	1+-	1++	1+-

Looking forwards - my two cents

- We need to understand the structure of exotic particles
 - With four and five quark states, how are the quarks arranged?
- Discovering them pseudo-randomly is a good start...

• Make sure we focus equally on final states they do not decay to

- Try to learn more about this famous state by studying these decay modes
 - Aim to measure the ratio of branching fractions

$$\mathscr{R}_{\psi\gamma} = \frac{\Gamma(\chi_{c1}(3872) \to \psi(2S)\gamma)}{\Gamma(\chi_{c1}(3872) \to J/\psi\gamma)}$$

- Predictions vary strongly depending on the nature of the $\chi_{c1}(3872)$ state
- Experimental history
 - BaBar measured $\mathscr{R}_{\psi\gamma} = 3.4 \pm 1.4$
 - LHCb measured $\mathscr{R}_{\psi\gamma} = 2.46 \pm 0.64 \pm 0.29$
 - Belle and BESIII found no significant signal for $\chi_{c1}(3872) \rightarrow \psi(2S)\gamma$

29/07/2024

arXiv:2406.17006 [hep-ex]

• In the latest LHCb measurement we determine

$$\mathcal{R}_{\psi\gamma} = \frac{\Gamma(B^+ \to [\chi_{c1}(3872) \to \psi(2S)\gamma]K^+)}{\Gamma(B^+ \to [\chi_{c1}(3872) \to J/\psi\gamma]K^+)}$$

arXiv:2406.17006 [hep-ex]

• Summary of yield from the mass fits

Daramator		Data-tal	xing period	
ranameter		$\operatorname{Run} 1$	$\operatorname{Run} 2$	
$\psi(2S)$	γK^{+}	5.3σ	6.7 <i>σ</i>	Stat only
$ \frac{N_{\mathrm{B}^+ \to (\chi_{c1}(3872) \to \psi(2\mathrm{S})\gamma)\mathrm{F}}}{N_{\mathrm{B} \to \psi(2\mathrm{S})\mathrm{K}^+\mathrm{X}}} N_{\mathrm{comb}} $	ζ+	$40 \pm 8 \\ 567 \pm 24 \\ 55 \pm 17$	63 ± 10 885 ± 29 132 ± 19	
J/ψ ⁻	γK ⁺			
$\begin{array}{c} N_{\mathrm{B}^+ \to (\chi_{\mathrm{c1}}(3872) \to \mathrm{J/\psi}\gamma)\mathrm{K}^+} \\ N_{\mathrm{B} \to \mathrm{J/\psi}\mathrm{X}} \\ N_{\chi_{\mathrm{c1}}(3872)\mathrm{K}^+} \\ N_{\mathrm{comb}} \end{array}$	$[10^{3}] \\ [10^{3}] \\ [10^{3}] \\ [10^{3}]$	0.43 ± 0.03 3.61 ± 0.11 1.18 ± 0.06 4.05 ± 0.11	1.69 ± 0.05 18.72 ± 0.26 5.53 ± 0.23 17.46 ± 0.21	

arXiv:2406.17006 [hep-ex]

• Summary of results by year

$$\mathcal{R}_{\psi\gamma}^{\text{Run 1}} = 2.50 \pm 0.52^{+0.20}_{-0.23} \pm 0.06$$
$$\mathcal{R}_{\psi\gamma}^{\text{Run 2}} = 1.49 \pm 0.23^{+0.13}_{-0.12} \pm 0.03$$

• Averaged (BLUE method) to give

$$\mathscr{R}_{\psi\gamma} = 1.67 \pm 0.21 \pm 0.12 \pm 0.04$$

- Inconsistent with an upper limit from BESIII
- Inconsistent with many predictions using DD* molecular models

LHCb Upgrade II

- Complete new detector required
 - Vertexing: Pixel detector with timing
 - Hadron PID: RICH with timing and better resolution, TORCH for low momentum tracks
 - Tracking: New magnet stations and pixel mighty tracker
 - Calorimeter: Better resolution and timing information
 - Muon system: New technologies for high occupancy regions

LHC