| Motivation | Nuclear EFT | Previous Work | $0\nu\beta\beta$ for $nn \rightarrow pp$ | Remaining Challenges |
|------------|-------------|---------------|------------------------------------------|----------------------|
|            |             |               |                                          |                      |
|            |             |               |                                          |                      |

## Nuclear Matrix Elements for Neutrinoless Double-Beta Decay

# **‡** Fermilab

Anthony V. Grebe

3 August 2024

A. Grebe 0/25

| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|------------|-------------|---------------|--------------------------|----------------------|
| 000000     | 000         | 00000         | 00000                    |                      |
| Outline    |             |               |                          |                      |





- O Previous Work
- **4**  $0\nu\beta\beta$  for  $nn \rightarrow pp$



| Motivation<br>●00000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn	o pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|------------------------|-------------------------------|----------------------|
| Dirac or Majo        | rana?              |                        |                               |                      |

• Oscillation experiments  $ightarrow m_{
u} > 0$ 

| Motivation<br>●00000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|------------------------|---------------------------------------|----------------------|
| Dirac or Majo        | rana?              |                        |                                       |                      |

- Oscillation experiments  $ightarrow m_{
  u} > 0$
- Neutrinos could gain Dirac mass term through Higgs coupling  $-m_D \bar{\nu}_I \nu_R$

| Motivation<br>●00000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|------------------------|---------------------------------------|----------------------|
| Dirac or Majo        | rana?              |                        |                                       |                      |

- Oscillation experiments  $ightarrow m_{
  u} > 0$
- Neutrinos could gain Dirac mass term through Higgs coupling  $-m_D \bar{\nu}_L \nu_R$
- Could also include Majorana mass term

$$-M\nu_R^T\nu_R$$

• Violates lepton number by 2 units

| Motivation    | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------|-------------|---------------|--------------------------|----------------------|
| ●00000        | 000         | 00000         | 00000                    |                      |
| Dirac or Maio | orana?      |               |                          |                      |

- Oscillation experiments  $ightarrow m_{
  u} > 0$
- Neutrinos could gain Dirac mass term through Higgs coupling  $-m_D \bar{\nu}_L \nu_R$
- Could also include Majorana mass term

$$-M\nu_R^T\nu_R$$

- Violates lepton number by 2 units
- Seesaw mechanism:  $m_{
  u}$  naturally small (if  $M \sim M_{
  m Pl}$ )

$$m_
u \propto {(Y v)^2 \over M} < 1 \,\, {
m eV}$$



Image credit: Kova (Symmetry Magazine, Sandbox Studio)





Furry, PR 56, 1184 (1939); Figure credit: Detmold and Murphy, 2004.07404

| Motivation<br>00●000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|------------------------|---------------------------------------|----------------------|
| Double-Beta I        | Decay              |                        |                                       |                      |

nuclear mass 
$$pprox \left( Z - rac{A}{2} 
ight)^2$$



Figure credit: Adapted from Jaffe and Taylor (2018), after J. Lilley (2001)

A. Grebe 4/25

 $\begin{array}{c|c} \mbox{Motivation} & \mbox{Nuclear EFT} & \mbox{Previous Work} & \mbox{$0\nu\beta\beta$ for $nn \rightarrow pp$} & \mbox{Remaining Challenges} \\ \hline \mbox{Double-Beta Decay} \end{array}$ 

nuclear mass 
$$\approx \left(Z - \frac{A}{2}\right)^2 + C \begin{cases} +1 & Z, N \text{ both odd} \\ -1 & Z, N \text{ both even} \\ 0 & \text{otherwise} \end{cases}$$



Figure credit: Adapted from Jaffe and Taylor (2018), after J. Lilley (2001)

| Motivation    | Nuclear EFT  | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------|--------------|---------------|--------------------------|----------------------|
| 000●00        | 000          | 00000         | 00000                    |                      |
| Extraction of | $m_{etaeta}$ |               |                          |                      |

$$\left(\begin{array}{c} \textit{\textit{T}}_{1/2}^{0\nu} \end{array}\right)^{-1} =$$

 $0\nu\beta\beta$  half-life (measured experimentally)

| Motivation    | Nuclear EFT             | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------|-------------------------|---------------|--------------------------|----------------------|
| 000●00        | 000                     | 00000         | 00000                    |                      |
| Extraction of | $\overline{m_{etaeta}}$ |               |                          |                      |

$$\left(\begin{array}{c} T_{1/2}^{0\nu} \end{array}\right)^{-1} = |\begin{array}{c} m_{\beta\beta} \\ \end{array}|^2$$

0
uetaeta half-life (measured experimentally) Effective double-beta neutrino mass

$$m_{\beta\beta} = \left|\sum_{k} U_{ek}^2 m_k\right|$$

| Motivation    | Nuclear EFT  | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------|--------------|---------------|--------------------------|----------------------|
| 000●00        | 000          | 00000         | 00000                    |                      |
| Extraction of | $m_{etaeta}$ |               |                          |                      |

$$\left( \begin{array}{c} T_{1/2}^{0\nu} \end{array} \right)^{-1} = | \begin{array}{c} m_{\beta\beta} \end{array} |^2 \begin{array}{c} G^{0\nu} \end{array}$$

 $0
u\beta\beta$  half-life (measured experimentally) Effective double-beta neutrino mass

$$m_{\beta\beta} = \left|\sum_{k} U_{ek}^2 m_k\right|$$

Kinematical factor (known functional form)

| Motivation    | Nuclear EFT      | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------|------------------|---------------|--------------------------|----------------------|
| 000●00        | 000              | 00000         | 00000                    |                      |
| Extraction of | $m_{\beta\beta}$ |               |                          |                      |

$$\left( \left[ T_{1/2}^{0\nu} \right]^{-1} = \left| \left[ m_{\beta\beta} \right]^2 \left[ G^{0\nu} \right] \left\langle A, Z+2 \right| J J |A, Z \right\rangle \right|^2$$

 $0
u\beta\beta$  half-life (measured experimentally) Effective double-beta neutrino mass  $m_{\beta\beta} = \left| \sum_{i} U_{ek}^2 m_k \right|$  Kinematical factor (known functional form) Nuclear matrix element

Note: Additional short-distance contributions in some BSM theories

| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|------------|-------------|---------------|--------------------------|----------------------|
| 000000     |             |               |                          |                      |
|            |             |               |                          |                      |

### KamLAND-Zen Results



Figure credits: Adapted from KamLAND-Zen (2406.11438); Kismalac, Wikimedia Commons

MotivationNuclear EFTPrevious Work $0\nu\beta\beta$  for  $nn \rightarrow pp$ Remaining Challenges00000000000000000000

#### Nuclear Matrix Element Estimates



Figure credit: Agostini et al. (RMP 95, 025002 (2202.01787))

| Motivation     | Nuclear EFT      | Previous Work | 0 uetaeta for $nn  ightarrow pp$ | Remaining Challenges |
|----------------|------------------|---------------|----------------------------------|----------------------|
|                | 000              |               |                                  |                      |
| Nuclear Effect | ive Field Theory |               |                                  |                      |

- Nuclear Effective Field Theory
  - Effective field theory (EFT): Approximate low-energy description of problem
  - Quark-gluon interactions  $\rightarrow$  effective hadronic couplings
  - Inputs: *NN* scattering and <sup>2</sup>H, <sup>3</sup>H binding energies (Bansal et al., PRC 98, 054301 (1712.10246))
    - For  $\chi$ EFT, also need interactions of  $N\pi$ ,  $\pi\pi$ ,  $NN\pi$ , etc.
    - For weak decays, also need axial and vector nucleon charges
  - Successful phenomonologically can compute binding energies up to <sup>132</sup>Sn to within 10–20% (Binder et al., PRC 93, 044332 (1512.03802))

Figure credit: DOE/NSF NSAC (0809.3137)



| Motivation<br>000000 | Nuclear EFT<br>⊙●⊙   | Previous Work<br>00000 | 0 uetaeta for $nn	o pp$ 00000 | Remaining Challenges |
|----------------------|----------------------|------------------------|-------------------------------|----------------------|
| Nuclear EFT          | for $0\nu\beta\beta$ |                        |                               |                      |



- Neutrino energy can be hard or soft
- Low-energy contribution factorises into two SM weak currents
  - Can be computed from existing experimental data
- $\bullet\,$  High-energy intermediate  $\nu$  outside of EFT validity
- Need contact term  $g_{NN}^{\nu}$  to absorb high-energy behavior (Cirigliano et al., PRC 97, 065501 (1710.01729), PRL 120, 202001 (1802.10097))
- Contact term promoted to leading order in EFT





- EFT contact term  $g^{
  u}_{NN}$  unique to 0
  uetaeta
  - No experimental data!
  - Cannot be computed from 2
    uetaeta
- Can be estimated using dispersive relations (generalized Cottingham formula) (Cottingham, AP 25, 424 (1963); Cirigliano et al., JHEP 05, 289 (2102.03371))
  - Likely correct to within 40% but requires model assumptions
  - Ongoing work to refine calculation (Van Goffrier, PhD thesis (2023))





- EFT contact term  $g^{
  u}_{NN}$  unique to 0
  uetaeta
  - No experimental data!
  - Cannot be computed from  $2
    u\beta\beta$
- Can be estimated using dispersive relations (generalized Cottingham formula) (Cottingham, AP 25, 424 (1963); Cirigliano et al., JHEP 05, 289 (2102.03371))
  - Likely correct to within 40% but requires model assumptions
  - Ongoing work to refine calculation (Van Goffrier, PhD thesis (2023))
- Calculate simple system with lattice QCD, match to EFT

| Motivation              | Nuclear EFT         | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|-------------------------|---------------------|---------------|--------------------------|----------------------|
| 000000                  | 000                 | ●0000         | 00000                    |                      |
| $0 uetaeta$ for $\pi^-$ | $\rightarrow \pi^+$ |               |                          |                      |



• Compute quark propagators from wall source and sink, contract at operators

| Motivation              | Nuclear EFT         | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|-------------------------|---------------------|---------------|--------------------------|----------------------|
| 000000                  | 000                 | ●0000         | 00000                    |                      |
| $0 uetaeta$ for $\pi^-$ | $\rightarrow \pi^+$ |               |                          |                      |



$$\mathcal{C}_{\pi^- 
ightarrow \pi^+} = \sum_{\mathbf{x}, \mathbf{y}} \int rac{d^4 q}{(2\pi)^4} rac{e^{i q \cdot (x-y)}}{q^2} \langle \mathcal{O}_{\pi^+}(t_+) J_\mu(x) J_\mu(y) \mathcal{O}_{\pi^-}^\dagger(t_-) 
angle$$

• Compute quark propagators from wall source and sink, contract at operators

- Double sum over both operator spatial positions
  - Naïve cost: L<sup>6</sup> (expensive)
  - FFT convolution theorem reduces cost to  $O(L^3 \log L)$

| Motivation              | Nuclear EFT         | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|-------------------------|---------------------|---------------|--------------------------|----------------------|
| 000000                  | 000                 | ●0000         | 00000                    |                      |
| $0 uetaeta$ for $\pi^-$ | $\rightarrow \pi^+$ |               |                          |                      |



$$\mathcal{C}_{\pi^- 
ightarrow \pi^+} = \sum_{\mathbf{x}, \mathbf{y}} \int rac{d^4 q}{(2\pi)^4} rac{e^{i q \cdot (\mathbf{x}-\mathbf{y})}}{q^2} \langle \mathcal{O}_{\pi^+}(t_+) J_\mu(x) J_\mu(y) \mathcal{O}_{\pi^-}^\dagger(t_-) 
angle$$

• Compute quark propagators from wall source and sink, contract at operators

- Double sum over both operator spatial positions
  - Naïve cost: L<sup>6</sup> (expensive)
  - FFT convolution theorem reduces cost to  $O(L^3 \log L)$
- Final integration over  $t = x_4 y_4$  required for matrix element

Figure credit: 2004.07404

| Motivation                | Nuclear EFT         | Previous Work | 0 uetaeta for $nn	o pp$ | Remaining Challenges |
|---------------------------|---------------------|---------------|-------------------------|----------------------|
| 000000                    | 000                 | o●ooo         | 00000                   |                      |
| $0 uetaeta$ for $\pi^-$ . | $\rightarrow \pi^+$ |               |                         |                      |

$$\langle \pi^+ | J^\mu J_\mu | \pi^- 
angle \propto 1 + rac{m_\pi^2}{8\pi^2 f_\pi^2} \left( 3 \log\left(rac{\mu^2}{m_\pi^2}
ight) + rac{7}{2} + rac{\pi^2}{4} + rac{5}{6} oldsymbol{g}_
u^{\pi\pi}(oldsymbol{\mu}) 
ight)$$

• Matrix element completely determined up to  $g_{
u}^{\pi\pi}$ 

| Motivation                | Nuclear EFT         | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------------------|---------------------|---------------|--------------------------|----------------------|
| 000000                    | 000                 | o●ooo         | 00000                    |                      |
| $0 uetaeta$ for $\pi^-$ . | $\rightarrow \pi^+$ |               |                          |                      |

$$\langle \pi^+ | J^\mu J_\mu | \pi^- 
angle \propto 1 + rac{m_\pi^2}{8\pi^2 f_\pi^2} \left( 3 \log\left(rac{\mu^2}{m_\pi^2}
ight) + rac{7}{2} + rac{\pi^2}{4} + rac{5}{6} oldsymbol{g}_
u^{\pi\pi}(oldsymbol{\mu}) 
ight)$$

- Matrix element completely determined up to  $g_{\nu}^{\pi\pi}$
- $g_{\nu}^{\pi\pi}(\mu = m_{\rho})$  measured by two groups with domain-wall fermions, extrapolated to physical point
  - -10.9(8) (Tuo, Feng, Jin, PRD 100, 094511 (1909.13525))
  - -10.8(5) (Detmold, Murphy, 2004.07404)



Figure credit: 2004.07404

| 000000     | 000         | 00000         | 00000                    | 00000                |
|------------|-------------|---------------|--------------------------|----------------------|
| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |

 $\mathcal{O} = \left(\bar{d}\Gamma_{i}u\right)\left(\bar{d}\Gamma_{j}u\right)$ 

- Contact interactions at scale of QCD
- Basis of 9 operators
  - 5 scalar operators (Γ<sup>i</sup>Γ<sup>j</sup> = s):
     *O*<sub>1</sub>, *O*<sub>2</sub>, *O*<sub>3</sub>, *O*'<sub>1</sub>, *O*'<sub>2</sub>
  - 4 vector operators  $(\Gamma^i \Gamma^j = v^{\mu})$ :  $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \mathcal{V}_4$
- Coefficients determined by BSM theories
  - Compute matrix elements of 9 operators separately
- Scalar operator matrix elements calculated for  $\pi^- \rightarrow \pi^+$  by CalLat (Nicholson et al., PRL 121, 172501 (1805.02634)) and NPLQCD (Detmold et al., PRD 107, 094501 (2208.05322))



| DI I       |             |               |                                          |                      |
|------------|-------------|---------------|------------------------------------------|----------------------|
| 000000     | 000         |               |                                          | 00000                |
| Motivation | Nuclear FFT | Previous Work | $0\nu\beta\beta$ for $nn \rightarrow nn$ | Remaining Challenges |





Figure credit: Nicholson et al., PRL 121, 172501 (1805.02634)

A. Grebe 14/25

| Motivation    | Nuclear EFT    | Previous Work      | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|---------------|----------------|--------------------|--------------------------|----------------------|
| 000000        | 000            | 0000●              | 00000                    |                      |
| Neutrinoful D | ouble-Beta Dec | ay (2 $ uetaeta$ ) |                          |                      |

- Rarest observed Standard Model process
- Experimental data used as inputs or tests of nuclear models of  $0\nu\beta\beta$  (Engel, Menéndez, RPP 80, 046301 (1610.06548))

| Motivation<br>000000 | Nuclear EFT<br>000 | Previous Work            | 0 uetaeta for $nn	o pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|--------------------------|-------------------------------|----------------------|
| Neutrinoful I        | Double-Beta        | Decay $(2\nu\beta\beta)$ |                               |                      |

- Rarest observed Standard Model process
- Experimental data used as inputs or tests of nuclear models of  $0\nu\beta\beta$  (Engel, Menéndez, RPP 80, 046301 (1610.06548))
- Computed for  $nn \rightarrow pp$  transition from lattice QCD (Shanahan et al., PRL 119, 062003 (1701.03456); Tiburzi et al., PRD 96, 054505 (1702.02929))
  - Single lattice spacing and  $m_\pi=800$  MeV
  - Computed matrix element to  $\sim$  2% uncertainty (stat.) and extracted  $2\nu\beta\beta$  counterterm

| Motivation<br>000000 | Nuclear EFT<br>000 | Previous Work            | 0 uetaeta for $nn 	o pp00000$ | Remaining Challenges |
|----------------------|--------------------|--------------------------|-------------------------------|----------------------|
| Neutrinoful          | Double-Reta        | $Decay (2\mu\beta\beta)$ |                               |                      |

- Rarest observed Standard Model process
- Experimental data used as inputs or tests of nuclear models of  $0\nu\beta\beta$  (Engel, Menéndez, RPP 80, 046301 (1610.06548))
- Computed for  $nn \rightarrow pp$  transition from lattice QCD (Shanahan et al., PRL 119, 062003 (1701.03456); Tiburzi et al., PRD 96, 054505 (1702.02929))
  - Single lattice spacing and  $m_\pi=800$  MeV
  - Computed matrix element to  $\sim$  2% uncertainty (stat.) and extracted  $2\nu\beta\beta$  counterterm
- No intermediate  $\nu$  prop weak currents decouple
  - Background field method quark propagators computed in presence of uniform weak field (Fucito et al., PLB 115, 148; Martinelli et al., PLB 116, 434; Bernard et al., PRL 49, 1076)



Figure credit: 1702.02929

| Motivation                                | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |  |  |
|-------------------------------------------|-------------|---------------|--------------------------|----------------------|--|--|
| 000000                                    | 000         | 00000         | ulleto 0000              |                      |  |  |
| Challenges for $0 uetaeta$ in $nn \to pp$ |             |               |                          |                      |  |  |

$$C_{nn o pp} = \sum_{\mathbf{x}, \mathbf{y}} \int rac{d^4 q}{(2\pi)^4} rac{e^{iq \cdot (\mathbf{x} - \mathbf{y})}}{q^2} \langle \mathcal{O}_{pp}(t_+) J_{\mu}(\mathbf{x}) J_{\mu}(\mathbf{y}) \mathcal{O}_{nn}^{\dagger}(t_-) 
angle$$

- Current insertions coupled by  $\nu$  propagator
  - Cannot use background field method

Davoudi, Detmold, Fu, **AVG**, Jay, Murphy, Oare, Shanahan, Wagman (NPLQCD), PRD 109, 114514 (2402.09362)

| Motivation                                | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |  |  |
|-------------------------------------------|-------------|---------------|--------------------------|----------------------|--|--|
| 000000                                    | 000         | 00000         | ulleto 0000              |                      |  |  |
| Challenges for $0 uetaeta$ in $nn \to pp$ |             |               |                          |                      |  |  |

$$C_{nn o pp} = \sum_{\mathbf{x}, \mathbf{y}} \int \frac{d^4 q}{(2\pi)^4} \frac{e^{iq \cdot (\mathbf{x} - \mathbf{y})}}{q^2} \langle \mathcal{O}_{pp}(t_+) J_{\mu}(\mathbf{x}) J_{\mu}(\mathbf{y}) \mathcal{O}_{nn}^{\dagger}(t_-) \rangle$$

- Current insertions coupled by  $\nu$  propagator
  - Cannot use background field method
- Signal-to-noise problem in nuclear systems
  - Ameliorated at large  $m_{\pi}$  but still need high stats

Davoudi, Detmold, Fu, **AVG**, Jay, Murphy, Oare, Shanahan, Wagman (NPLQCD), PRD 109, 114514 (2402.09362)

| Motivation     | Nuclear EFT                                 | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|----------------|---------------------------------------------|---------------|--------------------------|----------------------|
| 000000         | 000                                         | 00000         | $\bullet 0000$           |                      |
| Challenges for | $\sigma 0\nu\beta\beta$ in $nn \rightarrow$ | nn            |                          |                      |

$$\mathcal{C}_{nn o pp} = \sum_{\mathbf{x}, \mathbf{y}} \int rac{d^4 q}{(2\pi)^4} rac{e^{iq \cdot (\mathbf{x} - \mathbf{y})}}{q^2} \langle \mathcal{O}_{pp}(t_+) J_{\mu}(\mathbf{x}) J_{\mu}(\mathbf{y}) \mathcal{O}_{nn}^{\dagger}(t_-) 
angle$$

- Current insertions coupled by u propagator
  - Cannot use background field method
- Signal-to-noise problem in nuclear systems
  - Ameliorated at large  $m_{\pi}$  but still need high stats
- Complexity of contractions  $\propto N_q!$ 
  - $N_c!^4 N_u! N_d! = 6^4 24^2 \approx 10^6$  contractions needed

Davoudi, Detmold, Fu, **AVG**, Jay, Murphy, Oare, Shanahan, Wagman (NPLQCD), PRD 109, 114514 (2402.09362)

| D: I       | 1           | <b>•</b> •    |                          |                      |
|------------|-------------|---------------|--------------------------|----------------------|
|            |             |               | 00000                    |                      |
| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |

- Dibaryon (bi-local) operators good signal quality but computationally expensive
  - Require cost reduction techniques, e.g. sparsening (Detmold et al., PRD 104, 034502 (1908.07050), Amarasinghe et al., PRD 107, 094508 (2108.10835)), distillation (Peardon et al., PRD 80, 054506 (0905.2160); Hörz et al., PRC 103, 014003 (2009.11825))

| Motivation<br>000000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn 	o pp0 	o 0000$ | Remaining Challenges |
|----------------------|--------------------|------------------------|-----------------------------------|----------------------|
| D: 1                 | 1                  |                        |                                   |                      |

- Dibaryon (bi-local) operators good signal quality but computationally expensive
  - Require cost reduction techniques, e.g. sparsening (Detmold et al., PRD 104, 034502 (1908.07050), Amarasinghe et al., PRD 107, 094508 (2108.10835)), distillation (Peardon et al., PRD 80, 054506 (0905.2160); Hörz et al., PRC 103, 014003 (2009.11825))
- Hexaquark (point) operators relatively cheap but significant contamination

| Motivation<br>000000 | Nuclear EFT<br>000 |   | Previous Work<br>00000 | $0 u\beta\beta$ for $nn \rightarrow pp$<br>$0 \bullet 000$ | Remaining Challenges |
|----------------------|--------------------|---|------------------------|------------------------------------------------------------|----------------------|
| Di I                 |                    | ~ |                        |                                                            |                      |

- Dibaryon (bi-local) operators good signal quality but computationally expensive
  - Require cost reduction techniques, e.g. sparsening (Detmold et al., PRD 104, 034502 (1908.07050), Amarasinghe et al., PRD 107, 094508 (2108.10835)), distillation (Peardon et al., PRD 80, 054506 (0905.2160); Hörz et al., PRC 103, 014003 (2009.11825))
- Hexaquark (point) operators relatively cheap but significant contamination
- Wall operators cheap and relatively little contamination but noisiest

| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|------------|-------------|---------------|--------------------------|----------------------|
| 000000     | 000         | 00000         | 0 	o 0000                |                      |
| <b>D</b>   |             |               |                          |                      |

- Dibaryon (bi-local) operators good signal quality but computationally expensive
  - Require cost reduction techniques, e.g. sparsening (Detmold et al., PRD 104, 034502 (1908.07050), Amarasinghe et al., PRD 107, 094508 (2108.10835)), distillation (Peardon et al., PRD 80, 054506 (0905.2160); Hörz et al., PRC 103, 014003 (2009.11825))
- Hexaquark (point) operators relatively cheap but significant contamination
- Wall operators cheap and relatively little contamination but noisiest
- Variational analysis expensive
| 000000 | 000 | 00000 | 0●000 | 00000 |
|--------|-----|-------|-------|-------|
|        |     |       |       |       |

#### Dinucleon Interpolating Operators

- Dibaryon (bi-local) operators good signal quality but computationally expensive
  - Require cost reduction techniques, e.g. sparsening (Detmold et al., PRD 104, 034502 (1908.07050), Amarasinghe et al., PRD 107, 094508 (2108.10835)), distillation (Peardon et al., PRD 80, 054506 (0905.2160); Hörz et al., PRC 103, 014003 (2009.11825))
- Hexaquark (point) operators relatively cheap but significant contamination
- Wall operators cheap and relatively little contamination but noisiest
- Variational analysis expensive
- Compromise: Wall source, point sink
  - Improve signal with sparse (4<sup>3</sup>) grid at sink



| Motivation | Nuclear EFT                 | Previous Work | 0 uetaeta for $nn	o pp$ | Remaining Challenges |  |  |  |  |
|------------|-----------------------------|---------------|-------------------------|----------------------|--|--|--|--|
| 000000     | 000                         | 00000         | 00000                   |                      |  |  |  |  |
| Doducing   | Paducing Computational Cost |               |                         |                      |  |  |  |  |

- Reducing Computational Cost
  - 4-point function requires nuclear contractions  $(O(10^6))$  and convolution over operator positions  $(O(V^2))$ :  $10^6 V^2 \sim 10^{15}$



| 000000 00000                                                                  |                      |
|-------------------------------------------------------------------------------|----------------------|
| Motivation Nuclear EF1 Previous Work $U\nu\beta\beta$ for $nn \rightarrow pp$ | Remaining Challenges |

- Reducing Computational Cost
  - 4-point function requires nuclear contractions  $(O(10^6))$  and convolution over operator positions  $(O(V^2))$ :  $10^6 V^2 \sim 10^{15}$
  - Fast Fourier transform  $V^2 
    ightarrow V \log V \; (\sim 10^{12})$



|            | · · · ·     | C             |                                          |                      |
|------------|-------------|---------------|------------------------------------------|----------------------|
|            |             |               | 00000                                    |                      |
| Motivation | Nuclear EFT | Previous Work | $0\nu\beta\beta$ for $nn \rightarrow pp$ | Remaining Challenges |

- Reducing Computational Cost
  - 4-point function requires nuclear contractions  $(O(10^6))$  and convolution over operator positions  $(O(V^2))$ :  $10^6 V^2 \sim 10^{15}$
  - Fast Fourier transform  $V^2 
    ightarrow V \log V~(\sim 10^{12})$
  - $\bullet$  Sparsening at operator  $\rightarrow$  wrong answer



|              | 000000 | 000 | 00000 | 00000 | 00000 |
|--------------|--------|-----|-------|-------|-------|
| $\mathbf{W}$ | 000000 | 000 | 00000 | 00000 | 00000 |

#### Reducing Computational Cost

- 4-point function requires nuclear contractions  $(O(10^6))$  and convolution over operator positions  $(O(V^2))$ :  $10^6 V^2 \sim 10^{15}$
- Fast Fourier transform  $V^2 
  ightarrow V \log V~(\sim 10^{12})$
- Sparsening at operator  $\rightarrow$  wrong answer
- Decouple operator position sum from nuclear contractions
  - Sum 4-quark tensor  $T^{\alpha\beta\gamma\delta}_{abcd}$  over x,y
  - Reduces work to

 $(N_c N_s)^4 V \log V + 10^6 \sim 10^{10}$ 



| 000000 | 00000 | $0 \nu \beta \beta$ for $m \rightarrow pp$<br>00000 | 00000 |
|--------|-------|-----------------------------------------------------|-------|
|        |       |                                                     |       |

#### Reducing Computational Cost

- 4-point function requires nuclear contractions  $(O(10^6))$  and convolution over operator positions  $(O(V^2))$ :  $10^6 V^2 \sim 10^{15}$
- Fast Fourier transform  $V^2 
  ightarrow V \log V~(\sim 10^{12})$
- Sparsening at operator  $\rightarrow$  wrong answer
- Decouple operator position sum from nuclear contractions
  - Sum 4-quark tensor  $T^{\alpha\beta\gamma\delta}_{abcd}$  over x, y
  - Reduces work to

 $(N_c N_s)^4 V \log V + 10^6 \sim 10^{10}$ 

• Project quarks to positive parity:  $N_s 
ightarrow 2$ 



|              | 000000 | 000 | 00000 | 00000 | 00000 |
|--------------|--------|-----|-------|-------|-------|
| $\mathbf{W}$ | 000000 | 000 | 00000 | 00000 | 00000 |

## Reducing Computational Cost

- 4-point function requires nuclear contractions  $(O(10^6))$  and convolution over operator positions  $(O(V^2))$ :  $10^6 V^2 \sim 10^{15}$
- Fast Fourier transform  $V^2 
  ightarrow V \log V~(\sim 10^{12})$
- Sparsening at operator  $\rightarrow$  wrong answer
- Decouple operator position sum from nuclear contractions
  - Sum 4-quark tensor  $T^{\alpha\beta\gamma\delta}_{abcd}$  over x, y
  - Reduces work to

 $(N_c N_s)^4 V \log V + 10^6 \sim 10^{10}$ 

- Project quarks to positive parity:  $N_s 
  ightarrow 2$
- Total cost of  $O(10^9)$  prop multiplications/sink location/ $(t_x, t_y, T)$ 
  - $\bullet~\sim 200~\text{CPU}$  core-hours/config



| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|------------|-------------|---------------|--------------------------|----------------------|
| 000000     | 000         | 00000         | 00000                    |                      |
| Neutrino   | Propagator  |               |                          |                      |

- Long-distance amplitude contains significant contribution from low- $E_{\nu}$  tail
  - Contribution from separation  $t = t_y t_x$  falls off as  $t^{-2}$
  - Corresponds to large temporal separation between operators
  - Difficult to control (signal-to-noise problem)



| Motivation    | Nuclear EFT | Previous Work | $0 u\beta\beta$ for $nn  ightarrow pp$ | Remaining Challenges |
|---------------|-------------|---------------|----------------------------------------|----------------------|
| 000000        | 000         | 00000         | 00000                                  |                      |
| Neutrino Prop | agator      |               |                                        |                      |

- Long-distance amplitude contains significant contribution from low- $E_{\nu}$  tail
  - Contribution from separation  $t = t_y t_x$  falls off as  $t^{-2}$
  - Corresponds to large temporal separation between operators
  - Difficult to control (signal-to-noise problem)



$$\mathcal{S}_{
u}( au, \mathbf{z}) = rac{m_{etaeta}}{2L^3} \sum_{\mathbf{q} \in rac{2\pi}{L} \mathbb{Z}^3 \setminus \{\mathbf{0}\}} rac{e^{i\mathbf{q}\cdot\mathbf{z}}}{|\mathbf{q}|} e^{-|\mathbf{q}|| au|}$$

- Contribution falls off exponentially in t
- Match to zero-mode removed EFT amplitude



| Motivation     | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|----------------|-------------|---------------|--------------------------|----------------------|
| 000000         | 000         | 00000         | 00000                    |                      |
| Fitting Proced | lure        |               |                          |                      |

- Asymmetric excited state contamination from source and sink
  - More severe from point sink than wall source
- Extrapolate  $t_{
  m src}, t_{
  m snk} 
  ightarrow \infty$  at given operator separation t



| Motivation     | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|----------------|-------------|---------------|--------------------------|----------------------|
| 000000         | 000         | 00000         | 00000                    |                      |
| Fitting Proced | lure        |               |                          |                      |

- Asymmetric excited state contamination from source and sink
  - More severe from point sink than wall source
- Extrapolate  $t_{\rm src}, t_{\rm snk} \rightarrow \infty$  at given operator separation t
- Fit t dependence to exponential and integrate:

$$egin{aligned} &\langle pp|JJ|nn
angle \propto 2m_{nn}\int_{-\infty}^{\infty}dt\,rac{C_4(t, au)}{C_2( au)} \ &= 0.14(3)~{
m GeV}^2~({
m stat.}) \end{aligned}$$

• Need high stats (5M total sources) to resolve dependence on *t*, *t*<sub>src</sub>, *t*<sub>snk</sub>

Thanks to XSEDE/ACCESS, TACC, and RCAC for compute time!



| Motivation<br>000000 | Nuclear EFT<br>000       | Previous Work<br>00000 | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|----------------------|--------------------------|------------------------|---------------------------------------|----------------------|
| Difficulties in      | Extracting $\sigma_{MM}$ |                        |                                       |                      |

$$rac{\langle pp|JJ|nn
angle}{2m_{nn}}rac{1}{\mathcal{R}(E)\mathcal{M}(E)^2}=(1+3g_A^2)(J^\infty+\delta J^V)-rac{m_n^2}{8\pi^2}ec{g}_
u^{NN}$$

•  $\langle pp|JJ|nn \rangle = 0 \nu \beta \beta$  amplitude from LQCD

**B**/V/

- $\tilde{g}_{\nu}^{NN} \propto g_{\nu}^{NN} = \mathsf{EFT}$  counterterm of interest
- Known functions of NN interactions:
  - $\mathcal{M} = NN$  scattering (from effective-range expansion)
  - $\mathcal{R} = \text{Lellouch-Lüscher residue}$
  - $J^{\infty} =$ contribution from soft  $\nu$  exchange
  - $\delta J^V = FV$  correction

Kaplan et al., PLB 424, 390 (nucl-th/9801034); Lellouch and Lüscher, CMP 219, 31 (hep-lat/0003023); Davoudi and Kadam, PRD 102, 114521 (2007.15542), PRL 126, 152003 (2012.02083), PRD 105, 094502 (2111.11599)

| Motivation      | Nuclear EFT                | Previous Work | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|-----------------|----------------------------|---------------|---------------------------------------|----------------------|
| 000000          | 000                        | 00000         |                                       | 0●000                |
| Difficulties in | Extracting g <sub>MM</sub> |               |                                       |                      |

$$\mathcal{M}(E) = -\frac{4\pi}{m_N} \frac{1}{1/a - rp^2/2 + ip}$$

- Inputs required:
  - *a* = scattering length
  - r = effective range
  - $E = p^2/2m_N = FV$  energy shift
- Difficult to determine at  $m_{\pi}=800$  MeV
  - $\bullet$  Values for  $\mathcal{M},\,\mathcal{R}$  very different for bound vs. scattering states
- Well determined from experiment (a = 23.5 fm, r = 2.75 fm)

| Motivation    | Nuclear EFT | Previous Work | 0 uetaeta for $nn	o pp$ | Remaining Challenges |
|---------------|-------------|---------------|-------------------------|----------------------|
| 000000        | 000         | 00000         | 00000                   | 00●00                |
| Physical Poin | t           |               |                         |                      |

- EFT matching is more straightforward
- Lattice calculation more difficult
  - More expensive propagators
  - Worse signal-to-noise problem

| Motivation<br>000000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|------------------------|---------------------------------------|----------------------|
| Physical Point       | ;                  |                        |                                       |                      |

- EFT matching is more straightforward
- Lattice calculation more difficult
  - More expensive propagators
  - Worse signal-to-noise problem
- Recent progress on 2-point dibaryon correlators (Perry, 31 Jul, 11:35; Dhindsa, 2 Aug, 11:15; Green, 2 Aug, 11:35)
  - NN correlators being computed at  $m_{\pi}=170$  MeV  $pprox m_{\pi}^{
    m phys}$



Figure credit: Davoudi et al. (NPLQCD), unpublished

| Motivation<br>000000 | Nuclear EFT<br>000 | Previous Work<br>00000 | 0 uetaeta for $nn ightarrow pp$ 00000 | Remaining Challenges |
|----------------------|--------------------|------------------------|---------------------------------------|----------------------|
| Physical Point       | t                  |                        |                                       |                      |

- EFT matching is more straightforward
- Lattice calculation more difficult
  - More expensive propagators
  - Worse signal-to-noise problem
- Recent progress on 2-point dibaryon correlators (Perry, 31 Jul, 11:35; Dhindsa, 2 Aug, 11:15; Green, 2 Aug, 11:35)
  - NN correlators being computed at  $m_{\pi}=170$  MeV  $pprox m_{\pi}^{
    m phys}$
- Goal: Find good interpolating operator(s) at physical point, use these for  $0\nu\beta\beta$ 
  - t > 2 fm difficult to resolve  $\rightarrow$  need to reduce excited states

Figure credit: Davoudi et al. (NPLQCD), unpublished



Motivation<br/>00000Nuclear EFT<br/>00000Previous Work<br/>00000 $0 \nu \beta \beta$  for  $nn \rightarrow pp$ <br/>00000Remaining Challenges<br/>00000

# Progress Toward Physical Point

- Progress toward 0
  uetaeta at  $m_\pi=432$  MeV
- Use bi-local interpolators at source and sink to suppress excited states
- Use unphysical  $m_{
  u} \sim m_{\pi}$  to suppress large-t tail and FV corrections
- Stochastic noise vectors to represent neutrino propagator
- Summation method read contribution to  $0\nu\beta\beta$  from slope versus t

Wang, 31 Jul, 12:35



A. Grebe 24/25

| Motivation | Nuclear EFT | Previous Work | 0 uetaeta for $nn 	o pp$ | Remaining Challenges |
|------------|-------------|---------------|--------------------------|----------------------|
| 000000     | 000         | 00000         | 00000                    |                      |
| Conclusion |             |               |                          |                      |

- $0\nu\beta\beta$  experiments need theory input from hadronic physics
- Simulate light nuclear systems on lattice, extract EFT coefficients
- Can use EFT coefficients as input to *ab initio* nuclear many-body methods
  - Ongoing work to refine these methods, push to larger  ${\cal A}$
  - Also progress using lattice EFT for  $\beta$ -decay (Wang, 2 Aug, 12:55)
- Important whether we observe  $0
  u\beta\beta$  or place improved bounds
  - Next-gen experiments could rule out inverted ordering of  $\nu$  masses

Figure credit: DOE/NSF NSAC (0809.3137)



# Neutrino Masses

- Original formulation of Standard Model had  $m_{
  u}=0$
- Homestake experiment  $ightarrow m_
  u 
  eq 0$
- Exact values unknown but  $m_{
  u} < 1 \; {
  m eV}$  for all generations



Image credit: Wikimedia Commons

# Origin of Matter







#### Image credits: Wikimedia Commons; Symmetry Magazine, Sandbox Studio

### Neutrino Mass Scales

- Only mass gaps accessible by (most) experiments
- Known that
  - $\Delta_{12}^2 \equiv m_2^2 m_1^2 \ll \Delta_{13}^2, \Delta_{23}^2$
- Two possible orderings: normal and inverted
- More precise measurements needed to resolve ordering

Figure credit: Adapted from Kismalac, Wikimedia Commons



## $2\nu\beta\beta$ Diagram



Goeppart-Mayer, PR 48, 512 (1935); Figure credit: Detmold and Murphy, 2004.07404

#### Experimental $0\nu\beta\beta$ Signature



# Short- and Long-Distance Mechanisms



- Minimal extension to original SM
- Only parameter  $= m_{etaeta}$

#### Short-Distance



 $\left(\bar{u}\Gamma^{i}d\right)\left(\bar{u}\Gamma^{j}d\right)$ 

- Present in some BSM theories
- High-energy intermediate states
- Parameters = 9 operator coefficients

- Shell Model (SM): Nucleons arranged in shells, outer shell(s) studied most closely
- Quasiparticle random phase approximation (QRPA): Hartree-Fock approximation plus collective excitations
- Energy density functional (EDF): Mean field approach (like QRPA) but with additional support for large corrections away from mean field behavior
- Interacting boson model (IBM): Groups nucleons into bosonic pairs to lower effective degrees of freedom
- Subvariants of each model (e.g. density functional used in EDF)

# nEXO Planned Sensitivity



Figure credits: Adapted from nEXO (J. Phys. G 49, 015104 (2106.16243)); KamLAND-Zen (2406.11438); Kismalac, Wikimedia Commons

A. Grebe 8/18

# NN Controversy ( $m_{\pi}=800$ MeV)



NPLQCD, asymmetric (1706.06550)

- Energy shift of *NN* state  $\rightarrow a, r$
- (At least) one of these is false plateau from excited states

NPLQCD, variational (2108.10835)

# EFT Matching

• NN scattering approximated by effective range expansion (ERE)

$$\mathcal{M} = \frac{4\pi}{m_N} \frac{1}{p \cot \delta - ip}$$
$$p \cot \delta = -\frac{1}{a} + \frac{1}{2}rp^2 + \cdots$$

• Relates  $\mathcal{A}^{0
u}$  for nn o pp to EFT coefficient

$$\frac{\mathcal{A}^{0\nu}}{2m_{nn}}\frac{1}{\mathcal{R}(E)\mathcal{M}(E)^2} = (1+3g_A^2)(J^\infty+\delta J^V) - \frac{m_n^2}{8\pi^2}\tilde{g}_\nu^{NN}$$

*R*(*E*) = Lellouch-Lüscher residue (known function)
 δ*J<sup>V</sup>* = FV correction

#### **Complementary Experiments**





Image credits: Fermilab; DUNE (EPJC 80, 978 (2020),

2006.16043); KATRIN, Wikimedia Commons

A. Grebe 11/18

# Impact on NMEs

- $g_{NN}^{\nu}$  induces short-range contribution to nuclear  $0\nu\beta\beta$ potential
- Resultant contribution to nuclear matrix elements
- Can be estimated with many-body methods (e.g. quantum Monte Carlo)
- With  $g_{NN} \approx -1$  fm<sup>2</sup>, increases  $|\mathcal{M}^{0\nu}|$  by 25–40% (Weiss et al., PRC 106, 065501 (2112.08146))



Figure credit: 2112.08146

### Short- and Long-Distance Mechanisms

• Standard 0
uetaeta paradigm: Two weak currents with light Majorana neutrino

$$(\bar{d}P_L\gamma_\mu u)(x)S_\nu(x-y)(\bar{d}P_L\gamma^\mu u)(y)$$

- Intermediate neutrino propagates across nuclear scales
- All operators fully determined by SM
- Some BSM theories predict additional high-energy interactions
- Effective dimension-9 contact interactions (Cirigliano et al., PPNP 112, 103771 (2003.08493))

$$\left(\bar{d}\Gamma_{i}u\right)\left(\bar{d}\Gamma_{j}u\right)$$

- Relative sizes of operators (for different i, j) model dependent
- NB: Contact interaction at scale of quarks/gluons
  - Distinct from short-distance effective operator in nuclear EFT

# Dimension-9 $0\nu\beta\beta$ Operators in $\chi EFT$

- In Weinberg power counting, dominant effect of short-distance term is through  $\pi\pi ee$  interaction
- Can extract coefficient from  $\pi^- \to \pi^+ e e$
- Only scalar operators contribute
  - Vector operators suppressed by  $m_e/F_\pi$
- NB: Inconsistencies with Weinberg power counting
- Calculated by CalLat (Nicholson et al., PRL 121, 172501 (1805.02634)) and NPLQCD (Detmold et al., PRD 107, 094501 (2208.05322))



Figure credit: 2208.05322

# Neutrinoful Double-Beta Decay $(2\nu\beta\beta)$

- Rarest observed Standard Model process
- Experimental data used as inputs or tests of nuclear models of  $0\nu\beta\beta$  (Engel, Menéndez, RPP 80, 046301 (1610.06548))
- Computed for  $nn \rightarrow pp$  transition from lattice QCD (Shanahan et al., PRL 119, 062003 (1701.03456); Tiburzi et al., PRD 96, 054505 (1702.02929))
  - Single lattice spacing and volume
- No intermediate  $\nu$  prop weak currents decouple
  - Background field method quark propagators computed in presence of uniform weak field (Fucito et al., PLB 115, 148; Martinelli et al., PLB 116, 434; Bernard et al., PRL 49, 1076)



Figure credit: 1702.02929

#### Neutrinoful Double-Beta Decay $(2\nu\beta\beta)$



Figure credit: Tiburzi et al., PRD 96, 054505 (1702.02929)

#### Neutrinoful Double-Beta Decay $(2\nu\beta\beta)$

 $\bullet\,$  Can write full decay amplitude as single-current pieces and two-current LEC  $\mathbb{H}_{2,S}$ 



- Computed as  $\mathbb{H}_{2,S} = 4.7(2.2)$  fm
- $\mathbb{H}_{2,S}$  is about 5% correction to full amplitude
  - NLO contribution in  $2\nu\beta\beta$
  - $0\nu\beta\beta$  equivalent is LO O(1) correction!

#### Dimension-9 $0\nu\beta\beta$ Coefficients in $nn \rightarrow pp$

- Power counting different in  $nn \to pp$  versus  $\pi^- \to \pi^+$
- Vector operators, *O*<sub>3</sub> no longer suppressed
- Need to measure all nine operators to constrain BSM models
- Renormalization is still in progress



Preliminary (unrenormalized) extraction of  $\mathcal{O}_3^{nn \to pp}$  (Davoudi, AVG, et al., unpublished)