LA-UR-24-27971

Machine-learning approaches to accelerating lattice simulations

Scott Lawrence

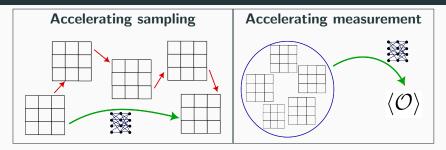
29 July 2024

Lattice 2024; Liverpool, UK

Things not in this talk

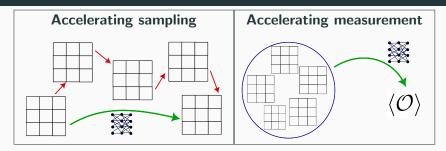
Learning spectral functions	[Chen+ 2110.13521] [Offler 2022] [Fournier+ 2020] [Kades+ 2020] [Wang-Shi-Zhou 2111.14760]
Phases or action parameters	[Carrasquilla-Melko 2017] [Peng-Tseng-Jiang 2212.14655] [Tanaka-Tomiya 1609.09087] [Nieuwenburg-Liu-Huber 1610.02048] [Rodriguez-Nieva-Scheurer 1805.05961] [Broecker+ 2017] [Shanahan-Trewartha-Detmold 1801.05784]
Learning of wave functions	[Carleo-Troyer 2017] [Deng-Li-Sarma 2017] [Luo+ 2012.05232]
Representing many-term actions	[Holland+ 2401.06481]

Design considerations



Requirement: Introduce no bias

Design considerations



Requirement: Introduce no bias

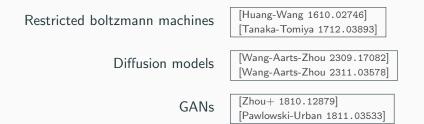
- Some algorithmic modification, specified by a function $f(\cdot)$
- An efficiently differentiable procedure for estimating the speed-up due to the use of *f*
- An ansatz for $f(\cdot)$ (typically a deep NN)

"Deep learning" is often optional.

Problem: sampling is slow

Save time by producing (nearly) statistically independent samples, without repeated querying of the action.

Sample from learned $\pi(U) \approx e^{-S(U)}$. Better approximations result in higher accetance rates.



An alternate view of probability distributions

Let z be a normal random variable. A general probability distribution is specified by a function $\phi(z)$.

$$\frac{1}{\sqrt{2\pi}}e^{-z^2/2}dz = p(\phi(z))d\phi(x)$$

First(?) appeared as a method for sampling from the normal distribution given samples from [0, 1] [Box-Muller 1958].

Appeared in supersymmetric and gauge theories, 40 years apart:

[Nicolai 1980] [Luscher 0907.5491]

Modern flows, suitable for deep learning:

[Dinh-Krueger-Bengio 1410.8516] [Dinh-Sohl-Dickstein-Bengio 1605.08803] [Kingma-Dhariwal 1807.03039] [Chen+ 1806.07366]

Continuous normalizing flows:	[Caselle-Cellini-Nada 2307.01107] [Haan+ 2110.02673]	
Normalizing flows allow direct	[Nicoli+ 1910.13496]	
estimation of partition function:	[Nicoli+ 2007.07115]	
The road to QCD:	[Abbott 2305.02402] [Abbott 2207.08945] [Albergo+ 2202.11712] [Boyda+ 2008.05456] [Kanwar+ 2003.06413] [Albergo-Kanwar-Shanahan 1904.12072]	

In [Abbott 2305.02402], an 8⁴ lattice with $\beta = 1$ is simulated with a 288-layer generative model. ESS is \sim 75%.

A few-parameter ansatz (with analytic insight) can often outperform deep learning!

Reference	$N_{ m params}$	ESS at $\beta = 6$
[Luscher 0907.5491]	8	< 1%
[Bacchio+ 2212.08469]	420	70%
[Boyda+ 2008.05456]	$\sim 10^{6}$	48%
T 1 1 1 1 1 1 1 1 1		1

Table reproduced from [Bacchio+ 2212.08469]

The above is for 2-dimensional Yang-Mills, where an exact normalizing flow is known [Kanwar 2106.01975].

Contour deformations

Problem: either e^{-S} or Oe^{-S} is complex-valued and noisy.

$$\int_{\mathcal{M}} \mathrm{d} z \ e^{-S[z]} = \int_{\mathbb{R}^N} \mathrm{d} x \ e^{-S[z(x)]} \mathrm{d} \mathrm{e} J$$

$$\langle \sigma \rangle = rac{\int e^{-S}}{\int |e^{-S}|} \qquad \mathrm{S2N} = rac{\langle \mathcal{O}
angle}{\sqrt{\langle |\mathcal{O}|^2
angle}}$$

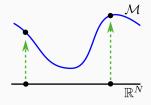
Sign problems and signal-to-noise problems are closely related!

Reviewed in [Alexandru+ 2007.05436]

Originally, Lefschetz thimbles:

[Witten 1001.2933] [Cristoforetti-Di Renzo-Scorzato 1205.3996]

Connected to analytically continued flows [SL-Yamauchi 2101.05755]



Alleviating sign problems

"Supervised" learning of thimbles: Although $\langle \sigma \rangle$ is difficult to estimate, $\partial \log \langle \sigma \rangle$ is quite cheap.

Fermionic systems

[Alexandru-**SL**+ 1709.01971]

[Mori-Kashiwa-Ohnishi 1705.05605] [Alexandru-**SL**+ 1804.00697]

[Alexandru-**SL**+ 1808.09799] [Gäntgen+ 2307.06785] [Rodekamp+ 2406.06711]

Gauge theories

[Alexandru-**SL**+ 1807.02027] [Kashiwa-Mori 2007.04167] [Namekawa+ 2109.11710] [Basar-Marincel 2208.02072]

Heavy-dense QCD

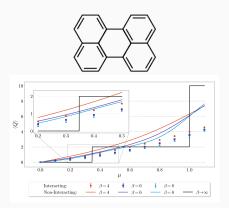
[Basar-Marincel 2311.06343]

Real-time dynamics

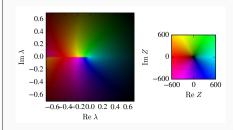
[**SL**-Yamauchi 2101.05755] [Kanwar-Wagman 2103.02602]

Complex couplings

[SL-Oh-Yamauchi 2205.12303]



Charge of perylene (C₂₀H₁₂). From [Rodekamp+ 2406.06711], with one parameter determined analytically.



Partition function (analytically continued) of scalar field theory in 0 + 1 dimensions, at $m^2 = 0.5$, as a function of complex coupling. Computed with a complex normalizing flow. From [**SL**-Oh-Yamauchi 2205.12303], with ~ 200 parameters.

Contours for signal-to-noise problems

Re-sampling on a deformed contour is expensive!

[Detmold+ 2003.05914] [Detmold+ 2101.12668]

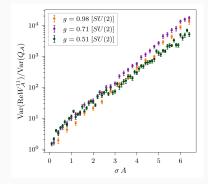
Move the contour-dependence from the domain to the integrand, by parameterizing $\mathbb{R} \to \gamma$:

$$\frac{\int_{\gamma} dz \, e^{-S} \mathcal{O}}{\int_{\gamma} dz \, e^{-S}} = \frac{\int_{\mathbb{R}} dx \, e^{-S_{\text{eff}}(x)} \mathcal{O}(z(x))}{\int_{\mathbb{R}} dx \, e^{-S_{\text{eff}}(x)}}$$

Rewrite with reweighting:

$$= \left\langle e^{S(x) - S_{\text{eff}}(x)} \mathcal{O}(z(x)) \right\rangle \left\langle e^{S - S_{\text{eff}}} \right\rangle^{-1}$$

Expectations w.r.t. original ensemble.



Improvement in variance of estimator of Wilson loops of various areas, in two-dimensional *SU*(2) Yang-Mills. From [Detmold+ 2101.12668]

Broader applicability of contour deformations

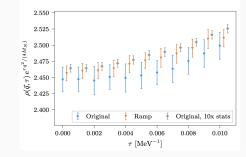
To spin systems:

[Kashiwa+ 2309.06018] [Warrington 2310.19761] [Mooney+ 2110.10699]

To non-holomorphic actions:

[Kanwar+ 2304.03229] [**SL**+ 2401.16733]

 $\vec{q} = (0, 0, 200) \text{ MeV}$



GFMC-measured Euclidean response of density in the deuteron. From [Kanwar+ 2304.03229], with one parameter.

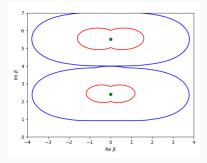
No-go theorems for contour deformations

Let α be any closed differential form obeying $|\alpha| \leq |e^{-S}dz|$. Then

$$\left|\int_{\mathbb{R}}\alpha\right| = \left|\int_{\gamma}\alpha\right| \leq \int_{\gamma}|\alpha| \leq \int_{\gamma}|\omega|$$

Searching for such α gives upper bounds on the best-possible average phase.

Bounds of this form are generically exponential in volume.



For 2-d Yang-Mills at complex coupling β : regions for which a perfect contour can be found (outside blue) and can be proven not to exist (inside orange). From [**SL**-Yamauchi 2311.13002]

Not all sign problems can be removed by contour deformations!

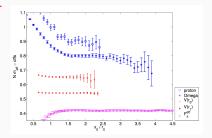
Problem: Many observables are expensive. Replace with equivalent, but less

expensive, observable.

"Surrogate observables"

Problem: Many observables are noisy. Replace with equivalent, but less noisy, observable.

"Control variates"



Effective masses, from the FLAG review 2021 [Aoki 2111.09849].

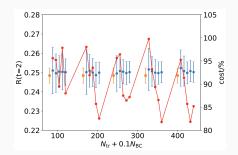
Variance reduction with normalizing flows: [Abbott+ 2401.10874]

Surrogate observables

Approximate \mathcal{O} (physical observable of interest) by $\tilde{\mathcal{O}}$ (efficient approximation).

$$\langle \mathcal{O} \rangle = \langle \tilde{\mathcal{O}} \rangle - \left(\langle \tilde{\mathcal{O}} \rangle_{s} - \langle \mathcal{O} \rangle_{s} \right)$$

[Yoon-Bhattacharya-Gupta 1807.05971] [Zhang+ 1909.10990]

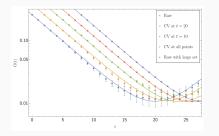


Predicting R(t = 2) (ratio of 3-pt to 2-pt) of kaon quasi-PDF correlators at $(p_{\text{pred}}, t_{\text{sep}}) = (4, 4, 5)$ from measurements at (3, 4, 5). From [Zhang+1909.10990]; a linear model.

Control variates from Schwinger-Dyson relations

Replace \mathcal{O} by $(\mathcal{O} - f)$, where $\langle f \rangle = 0$. If f is correlated with \mathcal{O} , measurements are less noisy.

 $0 = \langle \partial g - g \partial S \rangle$



 $\begin{array}{l} \mbox{Correlator in 2d scalar field theory,} \\ \mbox{improved with deep neural control variates.} \\ \mbox{From [Bedaque-Oh 2312.08228], with} \\ \mbox{} \sim 6 \times 10^3 \mbox{ parameters.} \end{array}$

The object to learn is g.

[Bhattacharya-**SL**-Yoo 2307.14950] [Bedaque-Oh 2312.08228] [**SL** 2404.10707]

Not much success for sign problems: [SL 2009.10901]

[**SL**-Yamauchi 2212.14606] [**SL**-Yamauchi 2312.12636]

Poor adoption into physics calculations

Many methods not ready for "prime time" (QCD) —but are also unused on lower-dimensional systems.

Some efforts to diffuse knowledge of techniques, e.g. a normalizing flow tutorial [Albergo+ 2101.08176] and two software packages:

[Tomiya-Terasaki 2208.08903] [Nicoli+ 2024]

Poor adoption into physics calculations

Many methods not ready for "prime time" (QCD) —but are also unused on lower-dimensional systems.

Some efforts to diffuse knowledge of techniques, e.g. a normalizing flow tutorial [Albergo+ 2101.08176] and two software packages:

[Tomiya-Terasaki 2208.08903] [Nicoli+ 2024]

A good first step: make **code** and **weights** publicly available.

Develop reusable software packages, **specialized** for lattice field theory.