Update on Glueballs

Colin Morningstar Carnegie Mellon University

Lattice 2024: Liverpool, England

August 3, 2024

Why an update on glueballs?

BESIII first-time determination of 0^{-+} quantum numbers of X(2370) in PRL **132**, 181901 (2024)

- BESIII earlier observation of $X(2370)$ in $J/\psi \to \gamma \pi^+ \pi^- \eta'$ [PRL **106**, 072002 (2011)]
- mass consistent with lightest 0^{-+} glueball from lattice QCD
- gluon rich environment

$X(2370)$ from BESIII

partial wave analysis of $J/\psi\to\gamma K^0_S K^0_S \eta'$ gives

 $m = 2395 \pm 11 \text{(stat)}_{-94}^{+26} \text{(syst)} \text{ MeV}/c^2$ Γ = 188⁺¹⁸₋₁₇(stat)⁺¹²⁴₋₃₃⁺(syst) MeV

• unfortunate name $X(2370)$ from earlier paper

$X(2370)$ from BESIII

optimal PWA fit: $X(1835), X(2370), \eta_c$ and broad 0^{-+} $X(2800)$ Breit-Wigner decays through $f_0(980)\eta'$ to $(K^0_SK^0_S)s\eta'$ and $(K^0_SK^0_S)_D\eta'$ with nonresonant components

• statistical significance of $X(2370)$ is $> 11.7\sigma$

Identifying glueballs in experiments

- difficult to identify glueballs
- **•** mass ratios only really known in pure gluon theory
- expect flavor symmetric decays, but differing quark masses leads to differing phase spaces
- no rigorous predictions on decay patterns and their branching ratios
- glueball decays could be similar to that of charmonium
- **•** states could be admixtures with quark-antiquark states

Some past glueball candidates

- light scalar candidates $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ (MarkII in 1980s, Crystal Barrel in 1990s)
- narrow $\xi(2230)$ tensor glueball candidate due to good flavor symmetric decay property from MarkIII in 1980s/BESI in 1990s \rightarrow not confirmed by BESII nor BESIII with much higher statistics
- odderon (odd C-parity) from D0 and TOTEM [PRL **127**, 062003 (2021)]

Pure-gauge glueballs in lattice QCD

- pure-gauge glueball spectrum
	- → long history in lattice QCD
- calculations date back to early days of lattice QCD (1970s)
- Monte Carlo computations very noisy, rapid correlator falloffs \longrightarrow need for large amount of statistics
- progress from extended smeared operators in 1980s/1990s → M. Teper, C. Michael, D. Weingarten, among others
- anisotropic lattice: better temporal resolution of correlators

−→ CM + M. Peardon late 1990s

Pure-gauge glueball spectrum

- **•** pure-gauge glueball masses (no quarks)
- **•** mass ratios well determined
- setting scale ambiguous since no quarks: string tension from Cornell potential
- **•** lightest scalar $\sim 1600 - 1700$ MeV

- states are not fixed numbers of gluons
- scalar mass gap has \$1 million bounty (Clay Mathematics Institute)

Excited states from correlation matrices

- **e** energies from temporal correlations $C_{ij}(t) = \langle 0|\overline{O}_i(t)O_i(0)|0\rangle$
- in finite volume, energies are discrete (neglect wrap-around)

$$
C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle
$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

 $\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$

- columns of U are eigenvectors of $C(\tau_0)^{-1/2}\,C(\tau_D)\,C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough so $\widetilde{C}(t)$ diagonal for $t > \tau_D$
- 2-exponential fits to $\widetilde{C}_{\alpha\alpha}(t)$ yield energies E_α and overlaps $Z_j^{(n)}$

Glueball operators

- important: use good operators for signal before noise growth
- glueball operators: gauge-invariant loops of link variables $U_u(x)$
- Teper fuzzing: large links from links+staples
- multiple sizes for radial structure
- different shapes for orbital structure

Qualitative features of glueball spectrum

- spectrum qualitatively understood in terms of interpolating operators of minimal dimension (Jaffe,Johnson,Ryzak, Ann. Phys. 168, 344 (1986))
- **o** dimension 4:

$$
\text{Tr}F_{\mu\nu}F_{\alpha\beta} \Rightarrow 0^{++}, 0^{-+}, 2^{++}, 2^{-+}
$$

o dimension 5:

$$
\text{Tr}F_{\mu\nu}D_{\rho}F_{\alpha\beta} \Rightarrow 1^{++}, 3^{++}
$$

e dimension 6:

$$
\text{Tr}F_{\mu\nu}F_{\rho\omega}F_{\alpha\beta} \Rightarrow 0^{\pm +}, 1^{\pm \pm}, 2^{\pm \pm}, 3^{\pm -}
$$

\n
$$
\text{Tr}F_{\mu\nu}\{D_{\rho}, D_{\omega}\}F_{\alpha\beta} \Rightarrow 1^{-+}, 3^{-+}, 4^{\pm +}
$$

- of lightest 6 states, 4 have the J^{PC} of the dimension 4 operators
- absence of low-lying $0^{\pm -},~1^{-+}$ glueballs explained

Glueballs from MIT bag model

- **o** qualitative agreement with bag model
- constituent gluons are TE or TM modes in spherical cavity
- **Hartree modes with** residual perturbative interactions
- center-of-mass correction
- parameter modifications 1983→ 1993 $\alpha_s : 1.0 \rightarrow 0.5$ bag parameter $B^{1/4}$: $230 \text{ MeV} \rightarrow 280 \text{ MeV}$

J. Kuti (private communication)

Glueballs from Isgur-Paton flux tube model

- disagreement with one particular string model
- Isgur, Paton, PRD31, 2910 (1985)

Why are glueballs with quarks so hard in lattice QCD?

- must extract all levels lying below glueballs of interest
- many 2-meson, 3-meson, 4-meson levels expected below
- 2-meson correlators require timeslice-to-timeslice propagators
- glueballs expected to be resonances
- glueballs require high statistics: difficult with quarks
- scalar sector requires large VEV subtraction

Glueballs with $N_f = 4$ light quarks

- Athenodorou et al. arXiv: 2308.10054 [hep-lat]
- examine effect of quark loops on glueball spectrum
- several ensembles used with $m_\pi \approx 250 \text{ MeV}$
- GEVP used on correlation matrices with only glueball operators
- no meson-meson operators!! (really need these)

• conclusions: scalar channel lowers toward 2π , tensor and pseudoscalar spectrum only slightly affected

Radiative decay of the scalar glueball

- Zou et al. arXiv:2404.01564 [hep-lat]
- quenched approximation, 3 gauge ensembles $a_s \sim 0.11, 0.14, 0.22$ fm, continuum extrapolation
- evaluate EM transition matrix element $\langle S|J^{\mu}_{\rm em}|V\rangle$
- multipole expansion: two form factors $E_1(Q^2)$ and $C_1(Q^2)$
- get widths from $E_1(0)$: $Q^2 \rightarrow 0$, $a \rightarrow 0$ limits taken

- find $\Gamma(J/\psi \to \gamma G) = 0.578(86)$ keV with $Br(J/\psi \to \gamma G) = 6.2(9) \times 10^{-3}$ and $\Gamma(G \to \gamma \phi) = 0.074(47)$ keV
- conclude $J\psi \rightarrow \gamma G \rightarrow \gamma \gamma \phi$ not detectable by BESIII
- C. Morningstar Glueballs 15

Error reduction algorithm

- Barca et al. arXiv:2406.12656 [hep-lat]
- **•** new multi-level sampling procedure proposed for error reduction of glueball correlators in pure gauge theory

- state-of-the-art stars, new method circles
- no reduction in glueball mass errors, but significant error reduction in large $-t$ correlators to improve confidence in plateau estimates

Glueball- η mixing

- X. Jiang et al., PRD **107**, 094510 (2023)
- studied mixing of 0^{-+} glueball and pseudoscalar $\overline{q}q$ meson
- $16^3 \times 128$ anisotropic $N_f = 2$ lattice with $m_\pi \approx 350$ MeV
- used distillation, no GEVP, diagonal and cross correlators
- obtained very small 3.5° mixing angle glueball- η from cross correlator

(left) Effective mass 0⁻⁺ glueball (right) Cross correlator (shifted horizontally) with fit from temporal derivative

Gravitational form factors of glueballs

- D. Pefkou (poster), Abbott, Hackett, Romero-Lopez, Shanahan
- use gravitational form factors to probe structure of glueballs
- obtained from energy-momentum tensor matrix elements
- express matrix element of $T_{\mu\nu}$ in scalar glueball state in terms of form factors $A(Q^2)$ and $D(Q^2)$
- results also for π , ρ , N , Δ

• preliminary results in pure gauge theory $24^3 \times 48$ lattice $a = 0.1$ fm

Scalar glueball scattering

- M. Hansen parallel talk (with M. Bruno and A. Rago)
- calculate finite-volume energies in Yang-Mills to extract $GG \rightarrow GG$ amplitudes
- anisotropic lattice, use of multi-level algorithm, scale set using t_0
- obtained volume dependence of A_1^{++} energy (single and 2 glueball operators)
- use Lüscher relation to get trilinear coupling λ from energies

Scalar glueball in $N_f = 2 + 1$ QCD

- R. Brett et al. arXiv:1909.07306 [hep-lat]
- \bullet 24³ × 128 anisotropic lattice, $m_{\pi} \sim 390$ MeV
- A_{1g}^{+} spectrum show below:
	- \bullet (left) 4 $\overline{q}q$ operators, 10 two-meson operators
	- (right) added glueball operator

- bad news for the scalar glueball?
- need for Lüscher analysis (ongoing)
- C. Morningstar Glueballs 20

A_{1g}^+ overlaps

Conclusion

- glueballs very challenging in full QCD
- recent study suggests no scalar state below 2 GeV is pure or dominant glueball
- pseudoscalar glueball is new focus of attention
- identifying glueballs in experiments is challenging too
- **.** long history in lattice QCD and still very active