$U(1)_A$ breaking in hot QCD in the chiral limit

Tamás G. Kovács

Eötvös Loránd University, Budapest, Hungary and Institute for Nuclear Research, Debrecen, Hungary

Partly based on TGK, PRL 132 (2024) 131902

Lattice '24, Liverpool, August 3, 2024

Symmetries of QCD and their realization

- partition function $Z = \int \mathcal{D}U \prod_f \det(D[U] + m_f) \cdot e^{-S_g[U]}$
- $m_{\rm u} \approx m_{\rm d} \approx 0$
- Symmetries: $SU(2)_{V} \times SU(2)_{A} \times U(1)_{V} \times U(1)_{A}$
 - U(1)_A anomalous
 - SU(2)_A spontaneously broken below T_c
- Order parameter of SU(2)_A (Banks-Casher formula):

$$\langle \bar{\psi}\psi \rangle \propto \frac{1}{V} \sum_{i} \frac{1}{\lambda_{i} + m} \propto \int_{-\Lambda}^{\Lambda} d\lambda \frac{m}{\lambda^{2} + m^{2}} \rho(\lambda) \xrightarrow{m \to 0} \rho(0)$$

 λ_i : eigenvalues of the Dirac operator, $\rho(\lambda)$: its spectral density

The finite temperature transition

Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

The finite temperature transition

Standard picture

Below T_c

- Chiral symmetry broken
- Order parameter: $\rho(0) \neq 0$

Above T_c

- Chiral symmetry restored
- Order parameter $\rho(0) = 0$
- (Pseudo)gap (lowest Matsubara mode)

spectral density at 0 \iff realization of chiral symmetry

Spectral density at $T = 1.1 T_c$ on the lattice

quenched, overlap spectrum, exact zero modes removed

Peak at zero in the spectral density!

Edwards et al. PRD 61 (2000); Alexandru and Horvath, PRD 92 (2015); Alexandru et al. 2404.12298

Kaczmarek, Mazur, Sharma, PRD 104 (2021); Kaczmarek, Shanker, Sharma, PRD 108 (2023)

Questions

• Why is there a peak at zero?

• How is it suppressed if the quark determinant is included?

• How does the peak influence chiral symmetry as $m \rightarrow 0$?

Instantons \rightarrow zero eigenvalues of D(A)

- (Anti)instanton
 - \rightarrow zero eigenvalue of D(A) with (-)+ chirality eigenmode
- High T: large instantons "squeezed out" in the temporal direction
 → dilute gas of instantons and antiinstantons
- Zero modes exponentially localized:

$$\psi(r) \propto e^{-\pi Tr}$$

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi Tr}$$

Spectrum of D(A)

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi Tr}$$

Spectrum of D(A)

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi Tr}$$

Spectrum of D(A)

The Dirac operator in the subspace of zero modes

$$D(A) = \left(\begin{array}{cc} 0 & iw \\ iw & 0 \end{array}\right)$$

$$w \propto e^{-\pi Tr}$$

Spectrum of D(A)

Spectrum of D(A) in dilute gas of instantons

The Dirac operator in the subspace of zero modes

Spectrum of D(A)

Instantons and antiinstantons

n_i instantons n_a antiinstantons

 \rightarrow $|n_i - n_a|$ exact zero modes + mixing near zero modes

Dirac operator in the subspace of zero modes (ZMZ)

Work by E.V. Shuryak, J.J.M. Verbaarschot, T. Schäfer (1990-2000)...

- Given n_i instantons, n_a antiinstantons in 3d box of size L^3
- Construct $(n_i + n_a) \times (n_i + n_a)$ matrix:

$$D = \begin{pmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$

• $w_{ii} = A \cdot \exp(-\pi T \cdot r_{ii}),$

 r_{ii} is the distance of instanton i and antiinstanton j.

Random matrix model of D(A) in the zero mode zone

- How to choose instanton numbers (n_i, n_a) and locations?
- Quenched lattice $T > 1.05T_c \rightarrow$ free instanton gas

Bonati et al. PRL 110 (2013); Vig and TGK, PRD 103 (2021)

n_i and n_a independent identical Poisson-distributed

$$p(n_i, n_a) = e^{-\chi V} \cdot \frac{(\chi V/2)^{n_i}}{n_i!} \cdot \frac{(\chi V/2)^{n_a}}{n_a!}$$

 χ is the topological susceptibility

- Locations random (uniform)
- ◆ D(A) in quenched QCD: ensemble of random matrices

Fit parameters to quenched lattice Dirac spectrum

 $T = 1.1 T_c$ overlap Dirac spectrum

- Two parameters:
 - χ topological susceptibility: from exact zero modes $\to \chi = \langle Q^2 \rangle / V$
 - A prefactor of the exponential mixing between zero modes
- Fit A to distribution of Dirac eigenvalues

lowest eigenvalue; L = 2.4fm fit

Fit parameters to quenched lattice Dirac spectrum

 $T = 1.1 T_c$ overlap Dirac spectrum

- Two parameters:
 - χ topological susceptibility: from exact zero modes $\rightarrow \chi = \langle Q^2 \rangle / V$
 - A prefactor of the exponential mixing between zero modes
- Fit A to distribution of Dirac eigenvalues

lowest eigenvalue; L = 2.4 fm fit L = 3.5 fm prediction

Random matrix model of full QCD zero mode zone

• Include $\det(D+m)^{N_f}$ in Boltzmann weight

Bulk weakly correlated with zero mode zone

- Approximate det with $\prod_{j=1,\dots,m} (\lambda_j + m)$
- Consistently included in RM model:

$$P(n_{i},n_{a}) = e^{-\chi_{0}V} \frac{1}{n_{i}!} \frac{1}{n_{a}!} \left(\frac{\chi_{0}V}{2}\right)^{n_{i}+n_{a}} \times \det(D+m)^{N_{f}}$$

free instanton gas with random locations

Random matrix simulation: results for $N_f = 2$

Topological susceptibility:

Random matrix simulation: results for $N_f = 2$

Topological susceptibility:
$$\chi(m)=m^2\chi_0$$
 not a fit! \uparrow quenched susceptibility

Explanation: free instanton gas

• Quark determinant for n_i instantons and n_a antiinstantons:

$$\det(D+m)^{N_f} = \prod_{n_i,n_a} (\lambda_i + m)^{N_f} \approx m^{N_f(n_i + n_a)}$$

$$\text{if } |\lambda_i| \ll m$$

 Reweighting depends on number of topological objects, not on their type or location

$$P(n_i, n_a) \propto \left(\frac{\chi_0 V}{2}\right)^{n_i + n_a} \times \det(D + m)^{N_f} \approx \left(\frac{m^{N_f} \chi_0 V}{2}\right)^{n_i + n_a}$$

- Free gas, but susceptibility suppressed as $\chi_0 o m^{N_{\rm f}} \chi_0$
- As $m \to 0$ instanton gas more dilute $\Rightarrow |\lambda_i|$ smaller
- Even in the chiral limit $|\lambda_i| \ll m \implies$ free instanton gas

Spectral density singular at the origin for $V \to \infty$

RM model simulation, parameters from quenched $T = 1.1 T_c$ overlap spectrum

$$ho(\lambda) \propto \lambda^{\alpha}$$
 fit: $\alpha = -0.770(5)$

Banks-Casher for a singular spectral density?

"Banks-Casher" for singular spectral density

$$\langle \bar{\psi}\psi \rangle \propto \langle \sum_{i} \frac{m}{m^{2} + \lambda_{i}^{2}} \rangle \approx \underbrace{\begin{pmatrix} \text{avg. number of in-} \\ \text{stantons in free gas} \end{pmatrix}}_{m^{N_{f}} \chi_{0} V} \times \frac{1}{m} = m^{N_{f}-1} \chi_{0} V$$

$$|\lambda_{i}| \ll m$$

"Banks-Casher" for singular spectral density

$$\langle \bar{\psi}\psi \rangle \propto \langle \sum_{i} \frac{m}{m^{2} + \lambda_{i}^{2}} \rangle \approx \underbrace{\begin{pmatrix} \text{avg. number of in-} \\ \text{stantons in free gas} \end{pmatrix}}_{m^{N_{f}}\chi_{0}V} \times \frac{1}{m} = m^{N_{f}-1}\chi_{0}V$$

$$|\lambda_{i}| \ll m$$

 $U(1)_A$ breaking susceptibility $\chi_{\pi} - \chi_{\delta}$

$$\langle \sum_{i} \frac{m^2}{(m^2 + \lambda_i^2)^2} \rangle \approx \underbrace{\left(\frac{\text{avg. number of in-}}{\text{stantons in free gas}} \right)}_{m^{N_{\text{f}}} \chi_0 V} \times \frac{1}{m^2} = m^{N_{\text{f}} - 2} \chi_0 V$$

$$\rightarrow \lim_{m \to 0} (\chi_{\pi} - \chi_{\delta}) \neq 0 \qquad \text{for } N_f = 2$$

Direct lattice simulations?

- Important to resolve small Dirac eigenvalues
 - → chiral action needed JLQCD, PRD 103 (2021)
- To see spectral peak: large volume, close to T_c needed
- $\frac{\chi_{\pi} \chi_{\delta}}{\chi_{\text{top}}} \propto m^{-2}$ instanton contribution independent of T
- Explore how far down in T free instanton gas persists
 - Compare eigenvalue statistics to prediction of free instanton gas
 - Can be done in each topological sector separately

Related developments & outlook $T \gtrsim T_c$

- RM model @ small $m \to {\rm instanton}$ -antiinstanton molecules do not contribute to $\langle \bar{\psi} \psi \rangle$ and $\chi_\pi \chi_\delta$ in the chiral limit TGK, PRL 132 (2024)
- Constraints on the Dirac spectrum from chiral symmetry restoration Giordano, 2404.03546 (2024), + talk on Monday
 → consistent with free instanton gas
- Localization properties of eigenmodes in ZMZ

```
Giordano and TGK, Universe 7 (2021)

Alexandru and Horvath, PRL 127 (2021), PLB 833 (2022)
```

Possible new "phase" of QCD just above T_c

```
Alexandru and Horvath, PRD 100 (2019); Glozman, Prog.Part.Nucl.Phys. 131 (2023) spatial structure (dim) of low eigenmodes very different @ T \gtrsim T_c and T \gg T_c _{\chi}QCD and CLQCD, 2305.09459; Pandey, Shanker, Sharma, 2407.09253
```

Lots to be explored!

Conclusions

- At high T non-interacting degrees of freedom: free instantons (+ IA molecules)
- Dirac spectral density has singular peak at zero at any finite T, for any nonzero quark mass
- Chiral symmetry restoration nontrivial

 \rightarrow $N_f = 2$: anomaly remains

- $SU(2)_{\rm A}$ restored, but order of the $m \to 0$ and $V \to \infty$ limit is still important
- Chiral limit with N_f degenerate light quarks:
 - $\langle \bar{\psi}\psi \rangle \propto m^{N_{\rm f}-1}$

agrees with small m expansion of the free energy

Kanazawa and Yamamoto, PRD 91 (2015), JHEP 01 (2016)

•
$$\chi_{\pi} - \chi_{\delta} \propto m^{N_{\rm f}-2}$$

BACKUP SLIDES

Spectral density – full QCD vs. ideal instanton gas

random matrix model, same topological susceptibility

Instanton-antiinstanton molecules

density of closest opposite charge pairs at given distance

