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Symmetries of QCD and their realization

@ partition function Z = [2U []sdet(D[U]+ m;)-e~SlY]
e m~my~0

@ Symmetries: SU(2)y x SU(2)a x U(1)y x U(1)a
@ U(1)a anomalous

@ SU(2)a spontaneously broken below T¢

@ Order parameter of SU(2). (Banks-Casher formula):

1
Ai+m

_ 1 A m
W) < L = [P g P(O)

A;: eigenvalues of the Dirac operator, p(A): its spectral density
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The finite temperature transition

Standard picture

Below T,
@ Chiral symmetry broken

spectral density

@ Order parameter: p(0) #0

0 eigenvalue
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The finite temperature transition

Standard picture

Below T,
@ Chiral symmetry broken

spectral density

@ Order parameter: p(0) #0

0 eigenvalue

Above T,

@ Chiral symmetry restored

@ Order parameter p(0) =0

spectral density

@ (Pseudo)gap (lowest Matsubara mode)

0 eigenvalue

spectral density at 0 <= realization of chiral symmetry
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Spectral density at T = 1.1 T, on the lattice

guenched, overlap spectrum, exact zero modes removed

spectral density

Peak at zero in the spectral density!
Edwards et al. PRD 61 (2000); Alexandru and Horvath, PRD 92 (2015); Alexandru et al. 2404.12298

Kaczmarek, Mazur, Sharma, PRD 104 (2021); Kaczmarek, Shanker, Sharma, PRD 108 (2023)
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Questions

@ Why is there a peak at zero?
@ How is it suppressed if the quark determinant is included?

@ How does the peak influence chiral symmetry as m — 07
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Instantons — zero eigenvalues of D(A)

@ (Anti)instanton
— zero eigenvalue of D(A) with (—)+ chirality eigenmode

@ High T:
large instantons “squeezed out” in the temporal direction
— dilute gas of instantons and antiinstantons

@ Zero modes exponentially localized:

—xTr

y(r)e<e
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Instanton-antiinstanton pair
The Dirac operator in the subspace of zero modes

— 0 iw —rTr
D(A) = < iw 0 ) W e
Spectrum of D(A) Instanton and antiinstanton
ImA
7 ReA 55‘ ‘
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Instanton-antiinstanton pair
The Dirac operator in the subspace of zero modes

— 0 iw —rTr
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Spectrum of D(A) Instanton and antiinstanton
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Spectrum of D(A) in dilute gas of instantons
The Dirac operator in the subspace of zero modes

Spectrum of D(A) Instantons and antiinstantons

d
ReA H@ ¢
g

ImA

n; instantons n, antiinstantons
— |nj — ny| exact zero modes + mixing near zero modes
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Dirac operator in the subspace of zero modes (ZMZ)

Work by E.V. Shuryak, J.J.M. Verbaarschot, T. Schafer (1990-2000)...

@ Given n instantons, n, antiinstantons in 3d box of size L3

@ Construct (n+ n,) x (n+ n,) matrix:

@ wj=A-exp(—=nT-ry),

rj is the distance of instanton / and antiinstanton ;.
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Random matrix model of D(A) in the zero mode zone

@ How to choose instanton numbers (n;, n,) and locations?

@ Quenched lattice T > 1.05T, — free instanton gas

Bonati et al. PRL 110 (2013); ~ Vig and TGK, PRD 103 (2021)

@ n and ny independent identical Poisson-distributed

na)=e %Y. (xV/2) (xV/2)m
@ n! Na!

p(ni,

x is the topological susceptibility

@ Locations random (uniform)

@ — D(A) in quenched QCD: ensemble of random matrices
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Fit parameters to quenched lattice Dirac spectrum

T=1.1T, overlap Dirac spectrum

@ Two parameters:
@ yx —topological susceptibility: from exact zero modes — y = (Q?)/V

@ A - prefactor of the exponential mixing between zero modes

@ Fit Ato distribution of Dirac eigenvalues
lowest eigenvalue; L =2.4fm fit
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Fit parameters to quenched lattice Dirac spectrum

T=1.1T, overlap Dirac spectrum
@ Two parameters:
@ yx —topological susceptibility: from exact zero modes — y = (Q?)/V
@ A - prefactor of the exponential mixing between zero modes
@ Fit Ato distribution of Dirac eigenvalues
lowest eigenvalue; L =2.4fmfit L= 3.5fm prediction

0.018
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Random matrix model of full QCD zero mode zone

@ Include det(D+ m)M in Boltzmann weight

o det(D+m)=T](%+m)x[(ki+m)

zmz bulk

@ Bulk weakly correlated with zero mode zone

@ Approximate det with (4 +m)

zmz

@ Consistently included in RM model:

Ni+-na
P(n,n,) = emv 1 (X" V) x det(D+ m)M

n!n,! 2

free instanton gas with random locations
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Random matrix simulation: results for Ny =2

Topological susceptibility:
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Random matrix simulation: results for Ny =2

Topological susceptibility:
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x(m)=m?y, not a fit!

1 quenched susceptibility
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Explanation: free instanton gas

@ Quark determinant for n, instantons and n, antiinstantons:
det(D+mM = TT(i+mMN ~ mi(n+na)

nj,Na
if |Aj| < m

@ Reweighting depends on number of topological objects,
not on their type or location

i N Pi+na
P(ni,n) o< <%> ><det(D—|—m)Nf ~ <m 27(0V>

@ Free gas, but susceptibility suppressed as  x, — mx,
@ As m— 0 instanton gas more dilute = |A;| smaller

@ Eveninthe chiral limit |1 <m = free instanton gas
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Spectral density singular at the origin for V —

RM model simulation, parameters from quenched T = 1.1T; overlap spectrum
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Banks-Casher for a singular spectral density?

rand University, Budapest) U(1) 4 breaking in hot QCD in the chiral limit

15/22



“Banks-Casher” for singular spectral density

_ m N 1 )
(Py) o (Zi: m> ~ (Samonamieegas ) X = mM= v
mM oV
Al <m
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“Banks-Casher” for singular spectral density

m

. 1
— o ~ (avg. number of in- R Ni—1

<II/II/> (; m2+7L,2> ~ (stantonsinfreegas )Xm = m" XOV

mexOV

|Ail < m
U(1)a breaking susceptibility x» — xs
m2 ~  (avg. number of in- 1 Ni—2
<Z m> ~ (stantonsinfreegas )XW =m XOV
i il S———
meXOV

= lim(xr—xs) #0 for Ny =2

m—0
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Direct lattice simulations?

@ Important to resolve small Dirac eigenvalues
— chiral action needed Jiaco, Pro 103 (2021)

@ To see spectral peak: large volume, close to T, needed

Xn—Xs
Xtop

-2

° m instanton contribution independent of T

@ Explore how far down in T free instanton gas persists
@ Compare eigenvalue statistics to prediction of free instanton gas

@ Can be done in each topological sector separately
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Related developments & outlook T = T¢

@ RM model @ small m — instanton-antiinstanton molecules
do not contribute to (Yy) and xr — xs in the chiral limit TGK, PRL 132 (2024)

@ Constraints on the Dirac spectrum from
chiral symmetry restoration ciordano, 2404.03546 (2024), + talk on Monday
— consistent with free instanton gas

@ Localization properties of eigenmodes in ZMZ
Giordano and TGK, Universe 7 (2021)

Alexandru and Horvath, PRL 127 (2021), PLB 833 (2022)

@ Possible new “phase” of QCD just above T,
Alexandru and Horvath, PRD 100 (2019);  Glozman, Prog.Part.Nucl.Phys. 131 (2023)
spatial structure (dim) of low eigenmodes very different @ T > T, and T > T,

xQCD and CLQCD, 2305.09459; Pandey, Shanker, Sharma, 2407.09253
Lots to be explored!
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Conclusions

@ At high T non-interacting degrees of freedom:
free instantons (+ IA molecules)

@ Dirac spectral density has singular peak at zero
at any finite T, for any nonzero quark mass

@ Chiral symmetry restoration nontrivial
— Nf=2: anomaly remains

@ SU(2), restored, but order of the
m— 0 and V — oo limit is still important

@ Chiral limit with N; degenerate light quarks:

! agrees with small m expansion of the free energy

Kanazawa and Yamamoto, PRD 91 (2015), JHEP 01 (2016)

o (Jy) o« mM-

® Ju—xs < mM?
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BACKUP SLIDES
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Spectral density — full QCD vs. ideal instanton gas

random matrix model, same topological susceptibility
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Instanton-antiinstanton molecules

density of closest opposite charge pairs at given distance
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