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• Connections to the conference


• Motivation and Context


• Spectral Densities and Lattice QCD


• Role of smearing


• Analytic continuation

Outline

W.I. Jay — MIT

Not a comprehensive review.


Impossible to review all the 
exciting work in this area in the 
time allotted. 


My topical presentation 
reflects my interests (and 
probably biases).


Apologies for all the excellent 
work not mentioned.
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Recent plenary talks at Lattice conference series 

• J. Bulava’s plenary talk at Lattice 2022


• Spectral Reconstruction of Inclusive Rates [link] 

• PoS LATTICE2022 (2023) 231 [arXiv:2301.04072]


• J. Liang’s plenary talk at Lattice 2019


• Hadronic Tensor and Neutrino-Nucleon Scattering [link]


• PoS LATTICE2019 (2020) 046 [arXiv:2008.12389]


Lattice@CERN 2024: Inverse Problems 8-12 July 2024 [Indico Link] 

• Week of talks/discussion about this topic. Check out the workshop webpage!

Recent adjacent discussion

4W.I. Jay — MIT

https://indico.hiskp.uni-bonn.de/event/40/contributions/505/attachments/255/578/bulava_lat2022.pdf
https://arxiv.org/abs/2301.04072
https://arxiv.org/pdf/2008.12389
https://arxiv.org/pdf/2008.12389
https://indico.cern.ch/event/1313552/overview


Neighboring talks at this conference
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Monday Tuesday

Wednesday Friday

More than a dozen presentations related to spectral densities



Motivation and Context
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Spectral Densities

7W.I. Jay — MIT

Euclidean correlation function

Evaluate with Lattice QCD

Spectral density

Compute from ?G(τ)

G(τ) = ∫
dω
2π

ρ(ω)e−ωτ



∫ d4x eiq⋅x⟨∅ | [ jEM
μ (x), jEM

ν (0)] |∅⟩

= (qμqν − q2gμν)ρ(q2)

Spectral functions for inclusive observables

8W.I. Jay — MIT

Figure: arXiv:1908.00921 
Davier, Hoecker, Malaescu, Zhang

R(s) =
σ(e+e− → hadrons)

σ(e+e− → μ+μ−)

Connection via the optical theorem

ρ(s) =
R(s)
12π2

The R-ratio: e+e− → hadrons

QCD correlation function
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Spectral functions for inclusive observables

9W.I. Jay — MIT

Other high-impact observables

• Hadronic width of the tau 


• 


• Inclusive semileptonic decays 


• 


• Inclusive neutrino-nucleon scattering 


• 


• Transport coefficients in hot QCD


•

τ → X

⟨0 | [JV−A, JV−A] |0⟩

B → Xℓν

⟨B | [JV−A, JV−A] |B⟩

νℓN → ℓX

⟨N | [JV−A, JV−A] |N⟩

⟨0 | [Tμν, Tμν] |0⟩1/β≠0



 “Cabibbo anomaly”

|Vud | , |Vus |



“Inclusive-exclusive 

tensions”

|Vcb | , |Vub |

Formaggio and Zeller 
Rev.Mod.Phys. 84 (2012) 1307-1341 

arXiv:1305.7513  

https://arxiv.org/abs/1305.7513
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Other high-impact observables

• Hadronic width of the tau 


• 


• Inclusive semileptonic decays 


• 


• Inclusive neutrino-nucleon scattering 


• 


• Transport coefficients in hot QCD


•

τ → X

⟨0 | [JV−A, JV−A] |0⟩

B → Xℓν

⟨B | [JV−A, JV−A] |B⟩

νℓN → ℓX

⟨N | [JV−A, JV−A] |N⟩

⟨0 | [Tμν, Tμν] |0⟩1/β≠0



 “Cabibbo anomaly”

|Vud | , |Vus |



“Inclusive-exclusive 

tensions”

|Vcb | , |Vub |

Formaggio and Zeller 
Rev.Mod.Phys. 84 (2012) 1307-1341 

arXiv:1305.7513  

Connections to these topics 
are all being discussed in the 

parallel talks highlighted 
earlier — check them out!
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The Inverse Problem
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The Inverse Problem
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Euclidean correlation function

Evaluate with Lattice QCD

Spectral density

Compute from ?G(τ)

G(τ) = ∫
dω
2π

ρ(ω)e−ωτ



The Inverse Problem
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G(τ) = ∫
dω
2π

ρ(ω)e−ωτ

Intertwined conceptual/technical challenges:


1. Calculation in finite volume deforms the spectrum.


2. Euclidean data is available at a finite set of points.


3. Statistical uncertainty is present.



Spectral Densities

14W.I. Jay — MIT

The deformation of finite volume

Consider inclusive electron-proton scattering

ω

ρ(ω)

Elastic scattering: 


Inelastic scattering: 

ρ(ω) ∼ δ(ω − Ep) × (form factor)2

ρ(ω) ∼ Θ (ω − MN − Mπ) × (phase space) × |ℳ |2
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The deformation of finite volume

Consider inclusive electron-proton scattering

Elastic scattering: 


Inelastic scattering: 

ρ(ω) ∼ δ(ω − Ep) × (form factor)2

ρ(ω) ∼ Θ (ω − MN − Mπ) × (phase space) × |ℳ |2

But… a QM system in a box has a discrete spectrum.

See plenary talks by 

Felix Erben — Tues 9:00 

Nilmani Mathur — Sat 9:00 M. Lüscher (1986)

L. Lellouch and M. Lüscher (2001)


…and many, many other contributors!

Finite-volume formalism in elastic region

Spectral Densities
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The deformation of finite volume

Consider inclusive electron-proton scattering

Elastic scattering: 


Inelastic scattering: 

ρ(ω) ∼ δ(ω − Ep) × (form factor)2

ρ(ω) ∼ Θ (ω − MN − Mπ) × (phase space) × |ℳ |2

ω

ρ(ω) ρ(ω, L)

ω

V = ∞ V = L3

Spectral Densities
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The deformation of finite volume

How to reconcile these two pictures?

ω

ρ(ω) ρ(ω, L)

ω

V = ∞ V = L3

Spectral Densities
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The deformation of finite volume

How to reconcile these two pictures? Smearing.

V = L3

Hansen, Meyer, and Robaina 
PRD 96 (2017) 9, 094513 

[arXiv:1704.08993]  

Poggio, Quinn, and Weinberg 
PRD 13 (1976) 1958

Choose a smearing kernel 


Define a smeared spectral function 

δϵ(ω) =

ρϵ(ω, L)

ρ(ω, L)

ω

Convolution

with δϵ(ω)

Spectral Densities



19W.I. Jay — MIT

The deformation of finite volume

How to reconcile these two pictures? Smearing.

V = L3

Hansen, Meyer, and Robaina 
PRD 96 (2017) 9, 094513 

[arXiv:1704.08993] 

ρ(ω) = lim
ϵ→0

lim
L→∞

ρϵ(ω, L)

ρϵ(ω, L)

ωω

ρ(ω)

Spectral Densities



The HLT Algorithm

20W.I. Jay — MIT

State of the art for practical reconstructions

Hansen, Lupo, and Tantalo 
PRD 99 (2019) 9, 094508 

arXiv:1903.06476

• Write linear Ansatz for solution:


‣ 


• Determine coefficients  by minimizing distance to smearing kernel—which can be 
chosen freely.


‣ 


‣ 


‣ Minimize the convex sum: 


• Elegant connection to Bayesian methods / Gaussian processes


‣ Del Debbio et al. arXiv:2311.18125

ρϵ(ω) = ∑
t

qt(ω)C(t) = ∫ dω′ ρ(ω′ ) ̂δϵ(ω′ , ω)

gt(ω)

A[q] = ∫ dω′ {δϵ(ω′ − ω) − ̂δϵ(ω′ , ω)}
2

B[q] = Var { ̂ρϵ(ω)}
ℱλ[q] = (1 − λ)A[q] + λB[q]

Tune  for

tradeoff between 


bias/variance

λ

Open-source implementation

github.com/LupoA/lsdensities

https://github.com/LupoA/lsdensities


• Gaussian smearing kernel used with the reconstruction using 
HLT algorithm


• Results presented in continuum limit


• Explicit check of systematic effect of finite volume (B64/B96) 


• Same  correlators as used in recent ETMC work on  
(g-2) [arXiv:2206.15084]. No QED/SIB corrections.

⟨VV⟩ μ

21W.I. Jay — MIT

Probing the energy-smeared R-ratio
ETMC 

PRL 130 (2023) 24, 241901 
arXiv: 2212.08467

= Smeared

   Experimental data

= Smeared LQCD

   reconstruction

= Experimental data

E [GeV]

R σ
(E

)

σ = 0.53 GeV

Spectral reconstruction of  correlators with HLT⟨VV⟩



As a matter of principle, how differential could one go? 

How much analytic information is contained in, say, 
O(100) points?

W.I. Jay — MIT 22



As a matter of principle, how differential could one go? 

How much analytic information is contained in, say, 
O(100) points?

W.I. Jay — MIT 23

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190 MIT BNL→
Patrick Oare
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Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Spectral Densities

There’s the pole!
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Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Spectral Densities

This is the distance ϵ
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Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Spectral Densities
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Spectral Densities
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Spectral Densities



29W.I. Jay — MIT

Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Spectral Densities



30W.I. Jay — MIT

Another perspective on smearing
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Look at  for various distances  above real line.
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Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Motivates defining 

 
ρϵ(ω) ≡

1
π

ImG(ω + iϵ)

∫ dω′ δϵ(ω − ω′ )ρ(ω′ )

Spectral Densities
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Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Poggio, Quinn, and Weinberg 
PRD 13 (1976) 1958

Motivates defining 

 
ρϵ(ω) ≡

1
π

ImG(ω + iϵ)

∫ dω′ δϵ(ω − ω′ )ρ(ω′ )

Spectral Densities
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Another perspective on smearing

Consider a Green function  with .


Look at  for various distances  above real line.

G(z) = 1/(z − E0) E0 = 1
2

ImG(ω + iϵ) ϵ

Motivates defining 

 
ρϵ(ω) ≡

1
π

ImG(ω + iϵ)

∫ dω′ δϵ(ω − ω′ )ρ(ω′ )

HLT framing of problem: this is a 
“Cauchy” kernel:


  

Becomes delta-function as 

δϵ(ω − ω′ ) ≡
1
π

ϵ
(ω − ω′ )2 + ϵ2

✓ ϵ → 0

Spectral Densities



The Inverse Problem
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G(τ) = ∫
dω
2π

ρ(ω)e−ωτ

Intertwined conceptual/technical challenges:


✓ Calculation in finite volume deforms the spectrum.


2. Euclidean data is available at a finite set of points.


3. Statistical uncertainty is present.

ρ(ω) = lim
ϵ→0

lim
L→∞

ρϵ(ω, L)

“How much analytic 
information is contained 
in this set of points?”



• Lattice QCD calculations furnish data in Euclidean time

Euclidean data at

Matsubara frequencies



iωℓ

Finite-volume energy levels

G(τ) = ∑
n

⟨0 |𝒪 |n⟩
2 (e−Enτ + e−En(β−τ))

• In frequency space (take ):a ≪ 1

G(iωℓ) = ∫ dτ eiωℓτG(τ)

= ∑
n

⟨0 |𝒪 |n⟩
2 ( 1

En + iωℓ
+

1
En − iωℓ )

Spectral weight  Residue of pole(s)⟺
35W.I. Jay — MIT

The Inverse Problem
Analytic continuation from a finite set of points

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



Euclidean data at

Matsubara frequencies



iωℓ

Finite-volume energy levels

Analytic continuation




Infer behavior of  near 
the real line given 

Euclidean data on the 
imaginary axis

⟺
G(z)

36W.I. Jay — MIT

The Inverse Problem
Analytic continuation from a finite set of points

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



Euclidean data at

Matsubara frequencies



iωℓ

Finite-volume energy levels

Analytic continuation




Infer behavior of  near 
the real line given 

Euclidean data on the 
imaginary axis

⟺
G(z)

can be viewed as a smeared spectral function.

ϵ

37W.I. Jay — MIT

ρϵ(ω) ≡
1
π

Im G(ω + iϵ)

The Inverse Problem
Analytic continuation from a finite set of points

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



• Recall: analytic functions are defined by convergent power series 
in an open set around each nonsingular point


• Radius of convergence is determined by the location of the 
nearest pole

Difficult to “see past 
the first pole” in 

these coordinates

38W.I. Jay — MIT

The Inverse Problem
The role of conformal maps

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



• Recall: analytic functions are defined by convergent power series 
in an open set around each nonsingular point


• Radius of convergence is determined by the location of the 
nearest pole

ℂ+ → 𝔻
So change coordinates!

39W.I. Jay — MIT

Cayley

transform

The Inverse Problem
The role of conformal maps

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



• Given Euclidean data  

,


,


construct an analytic function   

on the disk that interpolates these points: . 

• Evaluating this function near the boundary gives 

{ζl}, {wl}

{iωℓ} → ζℓ ⊂ 𝔻

{G(iωℓ)} ↦ wℓ ⊂ 𝔻

f(ζ)

f(ζℓ) = wl

ρϵ(ω)

40W.I. Jay — MIT

The Inverse Problem
The sharp technical problem

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



Nevanlinna-Pick Interpolation

41W.I. Jay — MIT

• Basic fact (maximum modulus principle ):


Let  be an analytic function.


Suppose  has a zero at : .


Then .

⟹

g(ζ) : 𝔻 → 𝔻

g(ζ) a ∈ 𝔻 g(a) = 0

g(ζ) = ba(ζ)g̃(ζ)

g(a) = 0Blaschke

factor

“Remainder”

(analytic in )𝔻

The big idea: “factor out what you know”

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



The big idea: “factor out what you know”

42W.I. Jay — MIT

• Basic fact (maximum modulus principle ):


Let  be an analytic function.


Suppose  has a zero at : .


Then .

⟹

g(ζ) : 𝔻 → 𝔻

g(ζ) a ∈ 𝔻 g(a) = 0

g(ζ) = ba(ζ)g̃(ζ)

• Note: Setup familiar in quark-flavor 
physics from z-expansion of form factors


‣ Blaschke factors "factor out” known 
analytic structure, e.g., sub-threshold 
poles.

Nevanlinna-Pick Interpolation

g(a) = 0
Boyd, Grinstein, Lebed 

Nucl.Phys.B 461 (1996) 493-511 
Phys.Rev.D 56 (1997) 6895-6911 

Caprini, Lellouch, Neubert 
Nucl.Phys.B 530 (1998) 153-181



Theorem (Nevanlinna, 1919/1929): 

• Any solution to the interpolation problem with N points can be 
written in the form


.


• “Nevanlinna coefficients” , , ,  


Known / calculable from input data


• Arbitrary function analytic function 


 Freedom to specify further Euclidean data to constrain the 
interpolating function


 Plays role of the “remainder” function on the previous slide

f(ζ) =
PN(ζ)fN(ζ) + QN(ζ)
RN(ζ)fN(ζ) + SN(ζ)

PN QN RN SN

⟺

fN(ζ) : 𝔻 → 𝔻

⟺

⟺

Repeated application of “factoring”
Analytic Continuation

43W.I. Jay — MIT

R. Nevanlinna 
Ann. Acad. Sci. Fenn. Ser. A 13 (1919) 
Ann. Acad. Sci. Fenn. Ser. A 32 (1929)

A. Nicolau 
Proc. Summer School in Complex and 

Harmonic analysis… (2016) 
[LINK]

First application in QFT 
(Condensed Matter Physics) 

J. Fei, C.-N. Yeh, E. Gull, 
PRL 126, 056402 (2021) 

arXiv:2010.04572

https://erepo.uef.fi/handle/123456789/15782


• Key point: The freedom and influence of the 
“remainder” is constrained, since .


• Question: What possible values can the 
interpolating function  can take when 
extrapolated to arbitrary points “ ”?


• Remarkably, this set can be parameterized 
explicitly for each  and each point “ ”.


• Size of this set  ambiguity in the analytic 
continuation

fN(ζ) ∈ 𝔻

f(ζ)

N

⟺

The full space of solutions
Analytic Continuation

44W.I. Jay — MIT

= given

f( ) = ?

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



• Answer: The space of possible values is a disk of 
radius  centered at . This disk called the 
Wertevorrat ,.


• Given  interpolation points, the Wertevorrat  
rigorously contains all possible analytic continuations 
at each extrapolation point .

rN(ζ) cN(ζ)
ΔN(ζ)

N ΔN(ζ)

ζ ∈ 𝔻

The full space of solutions
Analytic Continuation

rN =
|PNSN − QNRN |

|SN |2 − |RN |2cN =
PN(−RN /SN) + QN

RN(−RN /SN) + SN

45W.I. Jay — MIT

ζ

ΔN(ζ)
‣ Complete characterization of systematic uncertainty

‣ No “regularization” beyond smearing

‣ No model assumptions — just analyticity!

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



• Map the Wertevorrat back to the original coordinates

Back to the upper half-plane
Analytic Continuation

ρϵ(ω) =
1
π

Im G(ω + iϵ)

δρϵ(ω) =
1
π [max Im ∂DN(ω + iϵ)

−min Im ∂DN(ω + iϵ)]

46W.I. Jay — MIT

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190



• Bernecker and Meyer 
give a useful 
parameterization of R-
ratio data


• This parameterization 
can serve as input for a 
spectral reconstruction


• Can easily convert:
R(s) ⟺ ρ(ω) ⟺ G(iωℓ)

The R-ratio — reconstructing a parameterization
Numerical Example

47W.I. Jay — MIT

R(s)

s [GeV2]

ρ(770), ω(782)

ϕ(1020)

= Experimental data

= Parameterization

Formula from 
beginning of talk “Laplace transform”

Bernecker and Meyer 
Eur.Phys.J.A 47 (2011) 148 

arXiv:1107.4388 

https://arxiv.org/abs/1107.4388


• Euclidean data generated for  total points on the imaginary-energy axis


• Run reconstruction for different smearing widths 

β = 96

ϵ

48W.I. Jay — MIT

Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

This is ϵ



• Euclidean data generated for  total points on the imaginary-energy axis


• Run reconstruction for different smearing widths 


✓Exact answer is contained within the bounding envelope of the Wertevorrat

β = 96

ϵ

49W.I. Jay — MIT

Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

Negligible systematic 
uncertainty
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Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

• Euclidean data generated for  total points on the imaginary-energy axis


• Run reconstruction for different smearing widths 


✓Exact answer is contained within the bounding envelope of the Wertevorrat


✓Spectral peaks from  and  clearly visible in reconstructions

β = 96

ϵ

ρ(770)/ω(782) ϕ(1020)

Decreasing , 
Increasing 
resolution

ϵ
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Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

• Euclidean data generated for  total points on the imaginary-energy axis


• Run reconstruction for different smearing widths 


✓Exact answer is contained within the bounding envelope of the Wertevorrat


✓Spectral peaks from  and  clearly visible in reconstructions

β = 96

ϵ

ρ(770)/ω(782) ϕ(1020)

Small but nonzero 
systematic uncertainty
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Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

• Euclidean data generated for  total points on the imaginary-energy axis


• Run reconstruction for different smearing widths 


✓Exact answer is contained within the bounding envelope of the Wertevorrat


✓Spectral peaks from  and  clearly visible in reconstructions

β = 96

ϵ

ρ(770)/ω(782) ϕ(1020)
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Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

• Euclidean data generated for  total points on the imaginary-energy axis


• How does the size of the Wertevorrat scale with the number of points?


• Fix reconstruction energy and smearing . Vary number of points used in reconstruction.

β = 144

ϵ
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Numerical Example
The R-ratio — reconstructing a parameterization

Bergamaschi, WJ, Oare 
PRD 108 (2023) 7, 074516  

arXiv:2305.16190

• Euclidean data generated for  total points on the imaginary-energy axis


• How does the size of the Wertevorrat scale with the number of points?


• Fix reconstruction energy and smearing . Vary number of points used in reconstruction.

β = 144

ϵThe Wertevorrat offers a 

systematically improvable  approach for

increased energy resolution in spectral reconstructions.


The Wertevorrat bounds the full systematic uncertainty 
— even when this uncertainty is not small.



The Inverse Problem

55W.I. Jay — MIT

G(τ) = ∫
dω
2π

ρ(ω)e−ωτ

Intertwined conceptual/technical challenges:


✓ Calculation in finite volume deforms the spectrum.


✓ Euclidean data is available at a finite set of points.


3. Statistical uncertainty is present.

ρ(ω) = lim
ϵ→0

lim
L→∞

ρϵ(ω, L)

• Regularize, e.g., as with HLT or other familiar methods

• Impose analytic self-consistency conditions on statistical noise.

δρϵ(ω) ∼ Im ∂DN(ω + iϵ)

Abbott, WJ, Oare 
In progress 

arXiv: 240?.XXXXX



• Inclusive quantities contain a wealth of hadronic information


• A fresh look at these observables is timely:


‣ Muon (g-2) and the R-ratio


‣ , and the “Cabibbo anomaly”


‣ Inclusive versus exclusive determinations of and 


‣ Hadronic structure needed for upcoming DUNE and the EIC experiments


• Recent improved practical and formal understanding of the challenges associated with 
spectral reconstruction


• Exciting calculations have appeared over the past few years. I expect the community to 
see many more in the coming years.


• Lots of important and exciting work is happening in our field that I haven’t had time to 
discuss!

|Vud | , |Vus |

|Vcb | |Vub |

Summary
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• Recall: a green function is a map  ( =upper half-plane)


• Functions with this property are called Nevanlinna functions 

• Roughly speaking, any Nevanlinna function can be written as an integral of a suitable spectral function.


• Mapping the problem to the disk to invoke Nevanlinna’s theorem invokes these properties in an 
essential way.


• In other words, the interpolating function  already and automatically has the correct analytic 
structure


• The function :


• Vanishes at infinitely many points, e.g.,   

• Blows up to   Not a function .


• Has the wrong singularity structure/asymptotic behavior.


• Constructing an interpolating function  automatically excludes inconsistent/pathological 
functions like . This property holds when translated back to . 

G(z) : ℍ → ℍ ℍ

f : 𝔻 → 𝔻

sin(iz)

z ∈ iπ ℕ

±∞ ⟹ ℍ → ℍ

f : 𝔻 → 𝔻
sin(iz) G(z) : ℍ → ℍ

What about  and friends?sin(iz)
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The method announces its failure in two ways.


1. The Wertevorrat is expected to decrease monotonically as more information is included. If the 
radius of the Wertevorrat begins to jitter around some “saturation width,” numerical precision 
has become a limiting factor.


2. Nevanlinna’s theorem assumes the data satisfy an analytic self-consistency condition: the 
Pick matrix  must be positive semi-definite.


  


Possible Solutions


A. Check this condition and avoid data that violate the hypotheses of the theorem.


B. Rephrase the difficulty as a statistical pre-denoising problem: 


Given a statistical sample of , project to the closest set of points  such 
that  is positive semidefinite. “Closest” is determined by the covariance matrix.

Pij

Pij =
1 − wiw̄j

1 − ζiζ̄j

G ∈ ℝN G′ ∈ ℝN

Pij

What about statistical noise?
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Spectral functions for inclusive observables
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Inclusive electron-proton scattering: ep → eX

σ(e−p+ → e−X) ∼ F1(Q2, W ) + F2(Q2, W )

∫ d4x eiq⋅x⟨p | [ jEM
μ (x), jEM

ν (0)] |p⟩

= F1 × (Lorentz projectors)
+F2 × (Lorentz projectors)

X
e

e

p

W [GeV]

Q
2

[G
eV

]

F2

: Hadronic invariant mass


: Momentum transfer

W

Q2

Structure functions 

Optical theorem 
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Inclusive decay of the  lepton and τ |Vus | ETMC 
PRL 132 (2024) 26, 261901 

arXiv:2403.05404 

ETMC 
PRD 108 (2023) 7, 074513 

arXiv:2308.03125

Spectral reconstruction of  correlators with HLT⟨JusJus⟩

R(τ)
us

|Vus |2 ∝ ∫ dE Kσ(E/mτ) E2ρ(E2)

Smearing kernel

(from phase space/


kinematics)

Spectral function

from ⟨JusJus⟩

• Results given in continuum limit, with 
estimate of finite-size effects


• HLT method used, with the step 
function from kinematic threshold 
regulated via smearing


