

Christine Davies University of Glasgow

Lattice 2024, Liverpool, July 2024

1

Some relevant parallel session talks

BMW:

ETM:

Kalntis, Quark + lepton flavour physics, Mon. 14:15 Margari, poster, Tues. 17:15

- Lupo, Quark+lepton flavour physics, Mon. 15:55 Toth, poster, Tues. 17:15
- Kotov, Quark + lepton flavour physics, Wed. 11:55 Wang, Particle physics BSM, Wed. 12:15
- Risch, Quark + lepton flavour physics, Thurs. 10:40 Zimmermann, Quark+lepton flavour physics, Mon. 14:35
- Fermilab/HPQCD/MILC (FHM):
- McNeile, poster, Tues. 17:15
- Lahert, Quark + lepton flavour physics, Wed. 12:15 Lynch, Quark + lepton flavour physics, Wed. 12:35 Clark, Quark + lepton flavour physics, Thurs. 09:00 Sitison, Quark + lepton flavour physics, Thurs. 09:20 Bazavov, SM parameters, Fri. 15:15

Evangelista, Quark + lepton flavour physics, Thurs. 10:20

Koponen, Quark + lepton flavour physics, Mon. 11:35 Kuberski, Quark + lepton flavour physics, Mon. 12:35 Miller, Hadronic + nuclear spectrum, Tues. 16:15 Wittig, Quark + lepton flavour physics, Wed. 11:35 Conigli, SM parameters, Thurs. 09:40

RBC/UKQCD:

Mainz/CLS: Moningi, Quark + lepton flavour physics, Mon. 15:15

Parrino, Quark + lepton flavour physics, Thurs. 09:40 Erb, Quark + lepton flavour physics, Thurs. 10:00 RC*:

Lehner, Quark + lepton flavour physics, Mon. 11:55 Lin, Quark + lepton flavour physics, Mon. 14:55 Spiegel, Quark + lepton flavour physics, Wed. 11:15

Gruber, Quark + lepton flavour physics, Tues. 14:25 Cotellucci, Hadronic + nuclear spectrum, Thurs. 11:50 Parato, Hadronic + nuclear spectrum, Thurs. 12:10

Muon magnetic moment

 $\vec{\mu}_{\mu} = g_{\mu}$ ✓ *e* 2*m^µ* ◆ *S* \bar{S} \overline{a} $\vec{\mu}_{\mu}=g_{\mu}\left(\frac{\partial}{\partial x^{2}}\right)S$ $\frac{2\pi}{\mu}$

Leading, $O(\alpha)$, contribution α Leading, $O(\alpha)$, contribn is α 2π Schwinger 1948

 \mathbf{r} Figure 1: $\frac{1}{\sqrt{1-\lambda}}$ at the lower contribution to the lower contribution of the lower contribution to the lower contribution of the lower contribution of the lower contribution of the lower contribution of the lower c $t = \lambda$ 3 γ μ *X X Y* α would give SM/expt discrepancy New physics would give SM/expt discrepancy $\delta a_l^{\rm new\,heavy\, physics}$ *l* α α m_l^2 *l* motivates study of μ rather than e.

+ many higher order pieces …..

$$
\times~\frac{m_l^2}{M_X^2}
$$

reduce total ingeforming to J1F4R0-10.2 mid-2025. Further factor of 3 in stats: a_{μ} (Fexpt) = 1161352936(24)(212) $\,\times\,$ 1(0.2 $b_{\rm I}^0$

JaPARC@KEK, 160592 @529(22) EDM 0sing compa@tppagnetic ring, low monegratum fumate Data-taking to start in 2028 - 2 years running to get BNL uncertainties. Muonium (μ ⁺e[−]) spectroscopy from MUSEUM@KEK can also determine μ_{μ} 2106.11998

Comparison to the Standard Model Current status $10^{10}a_{\mu} = 11659205.9(2.2)$ \sim s-2@FNAL Difference $10^{10}a_\mu = 11659205.9(2.2)$ $10^{10}a_\mu = 11659181.0(4.3)$

Theory white paper: Phys. Rep. 887:1 (2020)

 5σ ! NO! $_{\text{need more work}}^{\text{QCD contributions}}$

Experiment - Muon PRL131:161802 (2023)

Theory white paper: Phys. Rep. 887:1 (2020) 1010 x contribution: QED: EW: QCD: Uncertainty in SM a_{μ} almost entirely from QCD. Lattice QCD is important here 11658471*.*8931(104) 15*.*36(10) 693*.*7(4*.*3)

-
-
- $= 24.9(4.8) \times 10^{-10}$

6

11LUL HOHVP

 $F_{order}(\alpha^2)$ light-hy-light Higher order LOHVP and the rows, the rows, from the rows, HVP represent the muon, with music lines denote photons unless otherwise labeled, otherwise labeled, otherwise lab vacuum un transporte relative relative relative Leadingorder (α^2) hadronic vacuum polarisation, LOHVP Hadronic light-by-light, $HLbL$ (α^3) HLbL

Blum et al, 1301.2607

QCD contributions

HVP

LO HVP

relative size

Theory white paper: Phys. Rep. 887:1 (2020)

variance in WP20

expt

2024

LO HVP

disconnected (but connected by gluons denoted by gluons denoted by gluons denoted by \mathcal{C} contribution that is discussed here. The shaded box in the s See Keshavarzi, Lat2023 talk, for details of this method

been most accurate.

Prospects for precise predictions of a^µ in the SM Impact of LOHVP on SM-experiment comparison for a_μ

9

BMW20: $10^{10} a_{\mu}^{\text{LOHVP}} = 707.5(5.5)$

2024 update KLOE

BMW/DMZ24, 2407.10913 the predictions for *a*LO-HVP adds 0.048fm ensemble, reduces finite L/T error. Uses data-driven for large-t tail. Blinded analysis.

reassessed. The error bars are SEM.

WP20 datadriven: 693.1(4.0)

Progress also by ETM, FHM and Mainz/CLS, results still blinded. See parallel talks by Garofalo, Lahert/Lynch, Kuberski.

Lattice HVP - 'window' observables $2377 T$ ~ 1.23 ce HVP - Window observables

 $\frac{1}{10}$ comparison of lattice results.

Short-distance (SD), intermediate comparison of distance (ID) and long-distance lattice results. 254 t>t" with a correlator extrapolated from fits to Monte Carlo 2555 data dominated by the more precise results for the more precise resul (LD)

 $\frac{1}{2}$. The black crosses show the full integrand whereas the integrand $\frac{1}{2}$ the three integrands of the three Bernecker+Meyer, 1107.4388; RBC/UKQCD, 1801.07224

from lattice QCD and collect recent results for *a*hvp Other windows are

Fermilab/HPOCI available …

 $\overline{1}$ $\overline{1}$ variable size, t1 zh rermiidad de la dinastia de la d
La

RIVE WIDENEL: $200.01(00)$ (0.070 GHCCH DIVIV *NVI* PIV \angle 4 P \angle 00.9 $\text{P}(0.9)$ (0.9 $\text{P}(0.970)$ UIICCI lallIly) meeting, Apr BMW/DMZ $24 = 206.57(65)$ (0.3% uncertainty) meeting, April 2024.

bare cross-section, e+e[−] →hadrons, final-state radiation included

New Test with data now published. Cross-section higher than previous expts. Issues with data for data-driven HVP

remove SM/Muon g-2 difference BUT how to average sensibly over experiments? Just increase uncertainty (a lot)?

1) CMD3@VEPP2000, Novosibirsk, energy scan up to 1.2 GeV. New results for $e^+e^-\rightarrow \pi^+\pi^-$: 2302.08834,

Issues with data for data-driven HVP

2) Inclusion of LEP data for τ hadronic decay Can select states (even number of pions) corresponding to vector current $\overline{u}\gamma_{\mu}d$

3) BaBar study of initial-state radiation (2308.05233) suggests issues with PHOKHARA Monte Carlo. May affect KLOE and BES radiative return experiments. Further study needed. predictions are computed from the individual *fi*⁺*fi*[≠] con-

 \int_0^∞ dE $E^2R(E^2)e^{-E|t|}$

Comparing data-driven and lattice HVP results

Can convert R(s) data into G(t) $12\pi^2$

Bernecker+Meyer, 1107.4388

0

Using publicly available KNT19 R(s) data

Compar

Colangelo et al 2205.12963

Intermediate 'window' 0.4 -1.0fm $(\Delta t=0.15fm)$ Comparing data-driven and lattice HVP results

Light-conn.-only $\frac{2}{2}$ result: must remove | TCSUI other pieces from $\begin{array}{|c|c|c|c|c|}\n\hline\n & 1 & 1\n\end{array}$ data-driven | numbers. Use isospin analysis $\frac{1}{2}$ $\sqrt{\frac{1}{10}}$ to isolate I=1 6.0 $\sigma = 7.7 \times 10^{-10}$ \pm 3.7% Benton '23 \blacktriangleright Γ Conclude: Lattice |
|
|
|
|
|
|
|
|
| LOHVP*,*light

Short-distance 'window' $0.0 - 0.4$ fm $(\Delta t = 0.15$ fm) Comparing data-driven and lattice HVP results

Light-quark-connected only. Lattice agreement good (errors $\sim 0.5\%$).

is a little lower than the lattice but not significantly $(2\pi \text{ still})$ contributes 20% here so CMD3 would push it up \sim 1%).

BMW/DMZ 24

Mainz/CLS 24

RBC/UKQCD 23

ETM 22

BBGKMP preliminary, KNT19

\sim 1 1 \sim 1 \sim 1 \sim 1 one-sided window, $U - U_1$ One-sided window, 0 - t₁

Comparing data-driven and lattice HVP results

See also analyses of hadronic contribution to running of α . Lattice differences with pre-CMD3 e⁺e[–] seen at low Q^2 . (washed out by M_Z , so no impact on EW fits)

Lattice QCD values higher than pre-CMD3 e+e[−] results at large-time/low s, i.e. where 2π tensions now seen.

BMW,2002.12347, Mainz, 2203.08676

 $t_1=1.0$ fm (43% HVP) = SD+ID. Lattice agreement on 2-3% difference with KNT19.

Lattice stat. errors large for $t_1 \geq 2$ fm for this (2019) data

BMW/ DMZ24 $t_1 = 2.8$ fm

$$
\gamma m
$$

Full HVP in window - compare directly to datadriven results (KNT19).

Overall conclusion from windows comparisons:

but increases input from data-driven tail Larger t₁ : CMD3/KNT19 tension falls: <0.3% total HVP for $t_1 \ge 2.5$ fm

Thanks to A. Keshavarzi and P. Lepage

Pragmatic hybrid strategy for further full HVP results

$$
a_{\mu}^{\text{LOHVP}} = \frac{\alpha_0}{\pi} \int_0^1 dx (1 - x) \Delta \alpha_{\text{had}}(t(x))
$$

-
-
-
-

Strong Liverpool involvement R.Pil.

R.Pilato, TI

25

HLbL contribution

Theory white paper 2020 :

H.Meyer , Theory initiative meeting, April 2024; A.Gerardin, Lattice2023 μ initiative nieeting, April 2024,

*<u>Work at a tiner late</u>***
C* **(Q* **(***Q* **(***R***)** *C* **(***Q* **(***R***)** *C* **(***D**R***)** *C* **(***Q* **(***R***)** *C* **(***D**R***)** *C* **(***R***)** *C* **(***R***</u>** \sum_{z} **i** b $\frac{1}{2}$ Work at a finer lattice spacing (0.08fm) ongoing

ence and the contract of the c physical light quality, a-0.0 *jµ*(*x*) *j*⌫(*y*) *j*(*z*) *j*(0) Kalntis talk, Mon. 14:15 ETM calculation underway, physical light quarks, a=0.08fm.

 $Uncertainty \sim 10-13\%$. Slightly $(\sim 3x10^{-10})$ higher than WP20

Method 2 : dispersive approach with lattice QCD input

HLbL contribution

Pseudoscalar transition form factor ${\mathcal{F}_{P\gamma^*\gamma^*}(-Q_1^2,-Q_2^2)}$

Mainz '22 109*.*6 *±* 15*.*9 χ 10⁻¹⁰ ulah wrzu lo $= 9.38(40)$ $\frac{\rm HLbL,ps-poles}{\mu}\simeq 8.51(52)\times 10^{-10}$ $= 9.38(40) \times 10^{-10}$ (WP20) Lattice is 2σ lower than WP20 for η but the difference is small: 0.5x10-10

pion/kaon loops 16*.*4 *±* 0*.*2 Standard F v the sum of the *weighted* sum to fix γ energy WP20,dispersive $\frac{1}{2}$ is continued the lattice $\frac{1}{2}$ to fix γ energy Details: A.Gerardin, Lattice2023 Calculate PVV 3-point function and take weighted sum over time-insertions of one V

PS poles dominate - other contributions

CONCLUDE : HLbL looking good, lattice providing critical input

RBC/UKQCD preliminary (Lin talk, Mon.)

Conclusions

There is almost certainly less new physics in muon g-2 than previously hoped, and perhaps none.

Lattice evidence stacks up in favour of CMD3

result (uncertainty needed $\sim 0.5\%$).

- Lots still to understand in e+e⁻→ hadrons data, tensions between expts. and with τ .
- Opportunity for lattice to finalise HVP results in next few years and provide SM
- Requires multiple results from different groups using blinded analyses (underway).
- This could include making use of data-driven results (even with tensions) for the
	-
	-

long-time tail, since quickest route to numbers with reasonable uncertainties.

Timescales: New theory white paper, end 2024; FINAL muon g-2 result 2025, further experimental info. (e+e−, J-PARC, MuonE) later in 2020s, early 2030s.

Progress on HLbL contribution also important and continuing.

Divide time region for light-q-conn into several windows: 0-0.4, 0.4-0.6, 0.6-1.2, 1.2-2.8. Correlated fit to last 3 allows different fit forms in different regions, lowers uncertainty.

BMW/DMZ '24 and BMW20

- volume correction from Finite-volume correction from L=6.8fm to ∞
- BMW/DMZ '24 have correction 9.31(88) for 0-2.8fm window. Test versus models using data-driven input.
	- BMW '20 have correction 18.7(2.5) for full

Difference between RMW/DM7 '24 and RMW20 for $\frac{1}{\pi}$ for the set set sets. The mass are also displayed $\frac{1}{\pi}$. The sets. The set of $\frac{1}{\pi}$. Difference between BMW/DMZ '24 and BMW20 for the total HVP:

 $_{\alpha}$ LOHVP, BMW/DMZ24 $_{\alpha}$ LOHVP, BMW20 $_{\alpha}$ K(5 5) \times 10⁻¹⁰ \mathfrak{m}_{μ} $a_{\mu}^{\rm LOHVP, BMW/DMZ24} - a_{\mu}^{\rm LOHVP, BMW20} = 6.5(5.5)\times 10^{-10}$

1.00 \blacksquare i.e. 1.2

*a*hvp *µ* \overline{f} vour de *correlators* Different flavour lattice correlators 394 each t¹ value in Table II. The blinding factor cancels in the \mathcal{A} $ators$

Gerardin, Lattice2023

contributes 20% here).

BBGKMP 2311.09523