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Big picture
Thinking about ideas at the intersection of nuclear and particle physics, lattice QFT and condensed matter 
physics (topological phases), may be profitable for all the fields involved.

Can offer a new point of view in understanding a certain theory/system?

Possibility of using machinery of one field in the other. 

Equilibrium topological insulators and lattice 
chiral fermions: the most celebrated example. 
(Avron, Seiler, Kaplan, Jansen, Golterman, Schmaltz, 
Thouless, Kohmoto, Nightingale, Nijs, Haldane, Zhang, Aoki,
Bernevig, Hughes)

Non-equilibrium quantum systems (Floquet) 
and lattice fermions?

Old ties New ties

(with T. Iadecola and L. Sivertsen)



Straight to the point

𝑥 →

t
→

space-time lattice for lattice QFT

Fermion doubling can be found in materials, 
spatial discretization in crystals. But no time 
doubler in the real world?

Not the full story!!

Fermion doubling on the lattice from discretization
of space and time.



Insulators two types: 

1.  Uninteresting                             Trivial, uninteresting bulk and          
boundary. Gapped bulk and boundary

2.  Interesting                                 Topological, sometimes boring bulk physics
but interesting with a boundary.  
Gapped bulk, gapless boundary.

The ties in continuous space-time, 
topological insulators and Dirac fermion

(Topological)

(Non-Topological)



The ties in continuous space-time

Relativistic fermion with a domain wall in mass: 

Massive fermion                          Gapped bulk

Domain wall                               Boundary

𝑑 + 1
dimensional 
bulk

𝑑 + 1
dimensional 
bulk

Relativistic fermion with open boundary condition: 

Positive mass: Trivial, no boundary modes.

Negative mass: Topological, boundary modes etc. 

Domain wall is a boundary between boring and interesting

Jackiw, Rebbi, Callan, Harvey



Dirac fermion and Quantum Hall Effect(QHE)

Right moverLeft mover

Figure credit: physicstoday
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Relativistic fermion 2+1 D: Quantum Hall 
Effect(QHE)(Callan-Harvey 1984)
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Transition to boring (non-topological)
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Discrete space-time Euclidean, discrete space 
continuous time

0,0

0, 𝜋

𝜋, 0

𝜋, 𝜋 0,0

0, 𝜋

Wilson-Dirac model with a domain wall
(Phys.Lett. B301 (1993) 219-223) 

BHZ model (Wilson-Dirac with continuous time)
with a domain wall (Similar to TKNN, 
PhysRevLett.49.405)

Gap 
closing

Gap 
closing

𝑚
𝑅

𝑚
𝑅

- Bulk mass - Bulk mass

0,0 , 0, 𝜋 , 𝜋, 0 , (𝜋, 𝜋)Weyl Fermion modes discrete space-time:

Discrete space

Discrete 
space-time

Net chirality on the boundary Net chirality on the boundary



1+1 D, discrete real time

Minkowski space discrete time solutions to Dirac equation: sin 𝑝* − 𝜖 = 0

where, e.g. 𝜖 = ± 𝑝!" +𝑚"

Point to note: For every zero at sin#! 𝜖, there is another at 𝜋 − sin#! 𝜖 . 
(time lattice spacing set to 1)

Takeaway: there is no time doubling for continuous 
time systems. Present only for discrete time.

But, something curious happens for periodically driven systems. 



Curious case of Floquet insulators (free 
fermion)

Continuous time but periodically driven.

Can exhibit novel phases: similar to undriven case.

Topological transition associated with gap closing.

What’s needed for this talk :

Rudner, Levin, Lindner, Sondhi, Else, Monroe, Nayak, Sondhi, Vishwanath, Yao, Berg, Zhang, Keyserlingk



Curious case of Floquet insulators

Continuous time but periodically driven.

Can exhibit novel phases: similar to undriven case.

Topological transition associated with gap closing.

What’s needed for this talk :

What does this mean? Energy is 
not conserved.

Rudner, Levin, Lindner, Sondhi, Else, Monroe, Nayak, Sondhi, Vishwanath, Yao, Berg, Zhang



Driving a Hamiltonian over period 𝑇.

Observe the system at integer multiples of 𝑇.

Define quasi energy:

Time evolution operator 𝑈! 𝑇 . Quasi energy is the "
#
log𝑈!(𝑇).

Conserved. 

Curious case of Floquet insulators



Identify phase boundaries by considering gap closing in quasi 
energy. 

Interestingly, we observe boundary modes of quasi energy: +
,
.

Curious case of Floquet insulators

Reminiscent of time doublers in lattice field theory. 



Is there an explicit way to connect Floquet
insulators to discrete time systems?

Can the Floquet spectrum be reinterpreted as a time lattice 
theory of some undriven Hamiltonian (with time lattice spacing 
T)?

Even if this was the case, what kind of undriven Hamiltonian 
would those be?

But boundary mode of 𝜋/𝑇 alone doesn’t imply it
can be thought of as a discrete time theory.  



SSH model (very similar to lattice 
staggered fermion: Dirac)

spatial lattice

sublattice,
two sites –> two components
of Dirac fermion

𝑢 𝑢 𝑢 𝑢𝑣 𝑣 𝑣

With PBC the spectrum is: 𝐸 𝑝 = ± 𝑢# + 𝑣# − 2𝑢𝑣 cos 2𝑝 , $
#
> 𝑝 > − $

#
= ± 𝑢 − 𝑣 # + 4𝑢𝑣 sin# 𝑝

Su–Schrieffer–Heeger (SSH) model spectrum

−
𝜋
2

𝜋
2

(periodic boundary)



SSH model: Static topological 
Hamiltonian

𝑢 − 𝑣 is Dirac mass.  

𝑣 − 𝑢 > 0: topological phase with zero energy edge mode for OBC (open boundary)

𝑢 − 𝑣 > 0: non-topological phase with zero energy edge mode for OBC (open boundary)

PBC: 𝐸 𝑝 = ± 𝑢 − 𝑣 # + 4𝑢𝑣 sin# 𝑝



Driven SSH model 

𝑡%

𝑡&

𝑇
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Time

𝑢 𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑈' 𝑇 = 𝑒%
()*!+!𝑒() *"+" ≡ 𝑒() *#, Get the quasi-energy 𝜖 by taking a log

Inspired by Keyserlingk and Sondhi, Majorana model

𝐻%

𝐻&



Quasi-energy Phase diagram periodic and 
open boundary

Axes in lattice units

Gap closing



Energy eigenvalues with PBC 

Along that line
energy eigenvalues
come in pairs.

i.e. 𝜖 and  $
,
− 𝜖

appear together.

Appears mappable to a 
discrete time 
lattice Hamiltonian.

What is this Hamiltonian like?

𝜋 pairing or fermion doubling.

=
𝜋
4 𝑡$



The zero-eigenvalue map
𝑖𝜕$ − 𝐻% = 0 to the discrete time operator      (𝑖∇$ − 𝐻)

Clearly, 𝐻 has to have half the dimensions as that of 𝐻'.

What is 𝐻 ?

𝐻 → sin𝐻' ?

𝑝% − 𝐻' = 0 sin 𝑝% − 𝐻 = 0

Solutions for 𝑝% match.



This works. But more is true..

The blue and black regions 
are 𝜋 paired with each other. 

Keep the blue line, discard the black one. 

Target 
Hamiltonian
𝐻



Surprise

SSH/staggered

𝐸

Dirac Hamiltonian



The map

𝜂

SSH: 

𝑢 =
1 + sin 2𝜂

2𝑇
𝑣 =

1 − sin 2𝜂
2𝑇

As 𝜂 goes from +ve to –ve, u and v switch. 

With OBC, one gives you a zero mode, the other doesn’t.
Discretizing time gives you a pi mode for the former and 
none for the other.

Topological to non-topological transition

Negative Dirac mass

Positive Dirac mass

𝑡$
=
𝜋
4

Iadecola, Sen, Sivertsen Phys.Rev.Lett. 132 (2024) 13, 136601



Summary
Periodically driven systems are sometimes termed as discrete time systems in a loose way. 

This comparison can be been made concrete. Thus far in 1 + 1 D.

The target Hamiltonian 𝐻 ends up being a topological Hamiltonian itself !!

And there is an exact analytical correspondence between the two.

The Floquet transition maps to a topological transition of a static Hamiltonian with discrete 
time. 



Open/recently answered questions

• Is there a way to make this comparison off the 𝑡& =
'
(

line? Yes, see 
Phys.Rev.Res. 6 (2024) 1, 013098

• Does the correspondence hold for interacting theories?

• Why is there an exact analytic match? (Who ordered that?)

• What happens in higher dimensional examples?

• Ties Bulk boundary correspondence of the two cases?



Big picture
Many common threads between different 
areas of physics. Sometimes recognized in 
hindsight. 

The ties of topological phases and fermion 
field theories go deep. 

We understand these ties for equilibrium, 
free and some interacting theories. 

Exploring such ties between periodically
driven systems and lattice field theory
may provide new perspective in both.


