Symmetric Mass Generation

David Tong University of Cambridge

Lattice 2024

Things To Do With a Quantum Field Theory

Take a quantum field theory with a symmetry G. When can we do the following while preserving G:

- Give a mass to all fields?
- Put the theory on a space with boundary?
- Put the theory on a lattice (with on-site action of G)?

*omitting many caveats!

Things To Do With a Quantum Field Theory

Take a quantum field theory with a symmetry G. When can we do the following while preserving G:

- Give a mass to all fields?
- Put the theory on a space with boundary?
- Put the theory on a lattice (with on-site action of G)?

A naive answer: You can do this when the symmetry G is vector-like.

But it's harder when the symmetry is chiral.

Things To Do With a Quantum Field Theory

Take a quantum field theory with a symmetry G. When can we do the following while preserving G:

- Give a mass to all fields?
- Put the theory on a space with boundary?
- Put the theory on a lattice (with on-site action of G)?

A conjecture: we can do all of these when the 't Hooft anomaly for G vanishes.

(This is the same requirement that is needed if you want to gauge G.)

e.g. for G=U(1) the 't Hooft anomaly is
$$~A=\sum_{
m left}q_i^3-\sum_{
m right}{ ilde q}_i^3$$

Symmetric Mass Generation

Idea: Give a mass to a bunch of fermions transforming under a *chiral* symmetry G *without breaking G.*

Note: $\bar{\psi}_R \psi_L$ does not work.

First Example: Chiral Fermion Parity

The first example was by Fidkowski and Kitaev '09, with an extension by Xiaoliang Qi.

Consider N massless Majorana fermions in d=1+1

$$S_{\text{Majorana}} = \int d^2 x \sum_{i=1}^{N} i \bar{\chi}_i \, \partial \chi_i$$

Can we gap the fermions preserving chiral fermion parity $\mathbf{Z}_2 = (-1)^{F_L}$?

Answer: Only if N is a multiple of 8.

First Example: Chiral Fermion Parity

- Clearly a mass term
$$\mathcal{L}_{ ext{mass}}=m\sum_i ar{\chi}_i \chi_i$$
 breaks the \mathbf{Z}_2 symmetry.

• The Gross-Neveu term gives a mass but spontaneously breaks **Z**₂

$$\mathcal{L}_{\rm GN} = g\left(\sum_{i=1}^{8} \bar{\chi}_i \chi_i\right)^2$$

• However, there is a clever four-fermion term that does the job

$$\mathcal{L}_{\rm FK} = g' \left(\sum_{i=1}^{8} \bar{\chi}_i \Gamma^A_{ij} \chi_j \right)^2$$

Another Example in d=1+1: The 3450 Model

Consider two left-moving Weyl fermions ψ and two right-moving Weyl fermions $ilde{\psi}$

Take charges under a G = U(1) symmetry to be

Can we gap these fermions preserving G?

Another Example in d=1+1: The 3450 Model

There are several ways to do this. One is to introduce a U(1) gauge field together with an additional scalar $\phi.$

• $m_{\phi}^2 \ll 0$ *H* is Higggsed. At low energies we have just the massless fermions.

• $m_{\phi}^2 \gg 0$ The scalar decouples and the H = U(1) confines, leaving behind two massless fermions

$$\Psi=\psi_2$$
 and $\tilde{\Psi}\sim\psi_1^2(\tilde{\psi}^\dagger)^2\tilde{\psi}_2$

Haldane '95; Wang and Wen '18; Tong '21

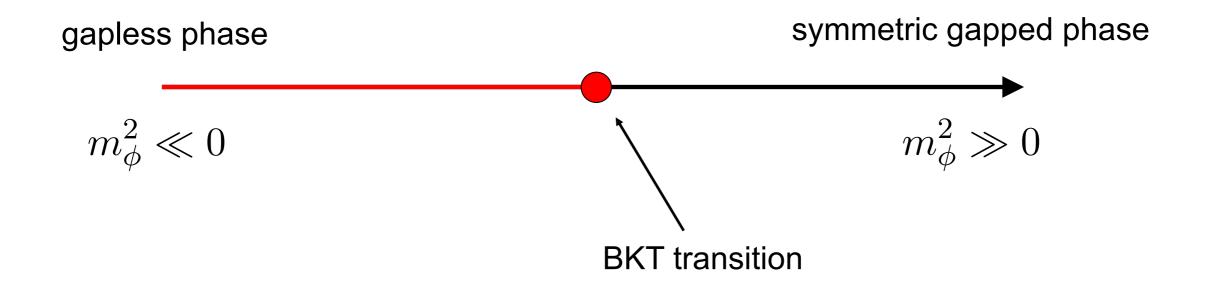
Another Example in d=1+1: The 3450 Model

Add the (dangerously) irrelevant operator

$$\mathcal{L}_{UV} \sim \psi_1^2 \psi_2 (\tilde{\psi}_1^{\dagger})^2 \tilde{\psi}_2$$

In the confining phase, this flows to the symmetry-preserving mass term

$$\mathcal{L}_{IR} \sim \Psi \tilde{\Psi}$$



Symmetric Mass Generation in d=3+1

It is possible to gap one generation of the Standard Model *without* breaking electroweak symmetry SU(2) x U(1)

Razamat and Tong '20

Symmetric Mass Generation on the Lattice

• Many examples of symmetric mass generation on the lattice

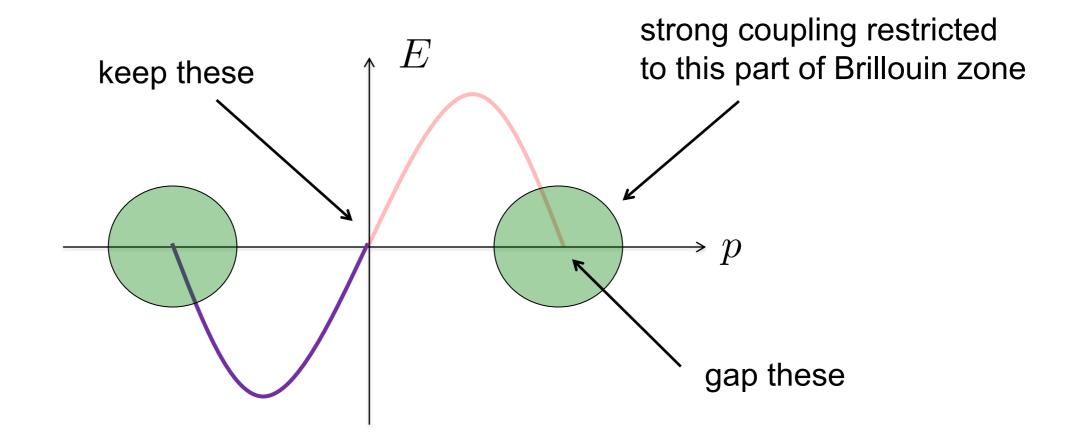
Ayyar and Chandrasekharan, Catterall et al, Shaich, A. Hassenfratz

• This is like the older PMS phase, but with a continuum limit.

Chiral Fermions on the Lattice

Old idea of Eichten and Preskill '86:

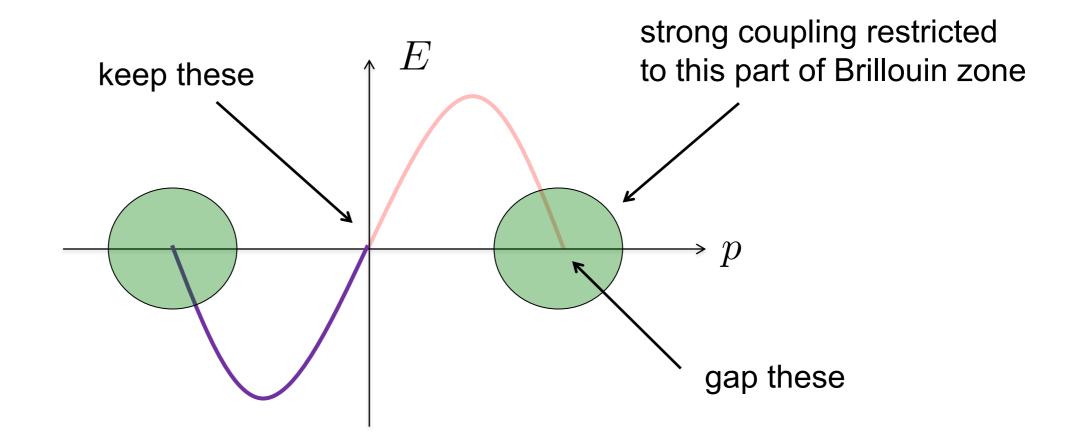
Turn on irrelevant 4-fermion coupling to gap the fermion doublers



Chiral Fermions on the Lattice

Old idea of Eichten and Preskill '86:

Turn on irrelevant 4-fermion coupling to gap the fermion doublers

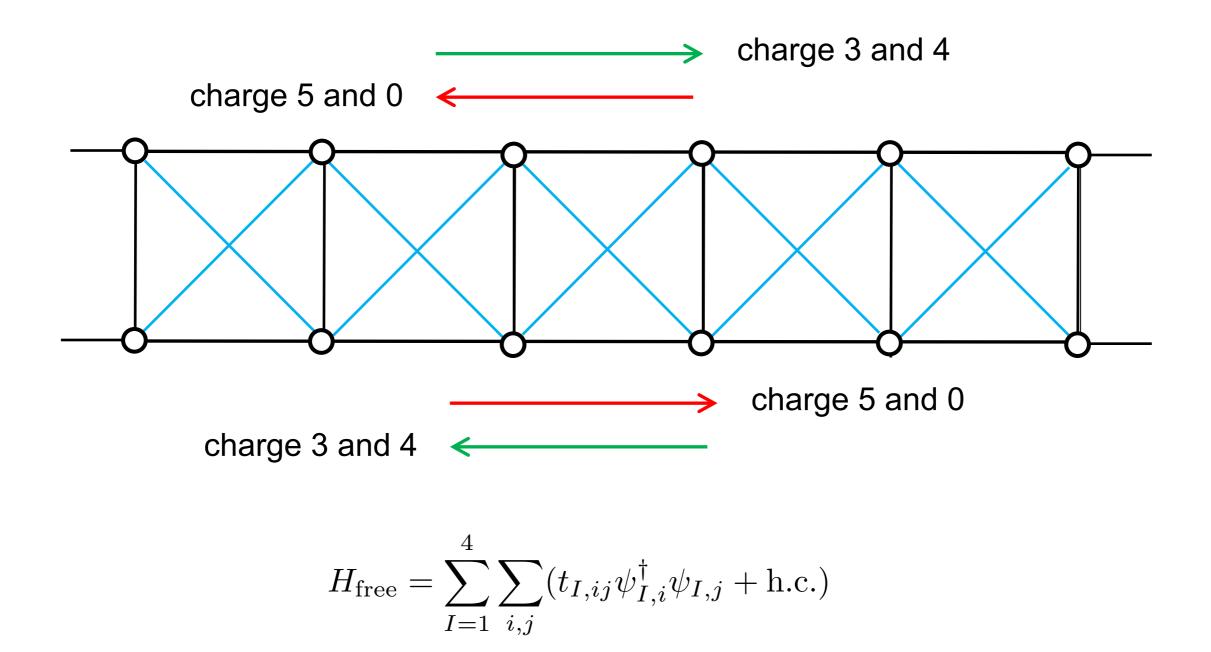


Problem: it doesn't work!

Golterman, Pechter and Rivas '93, Shamir '93, Chen, Giedt, Poppitz '07

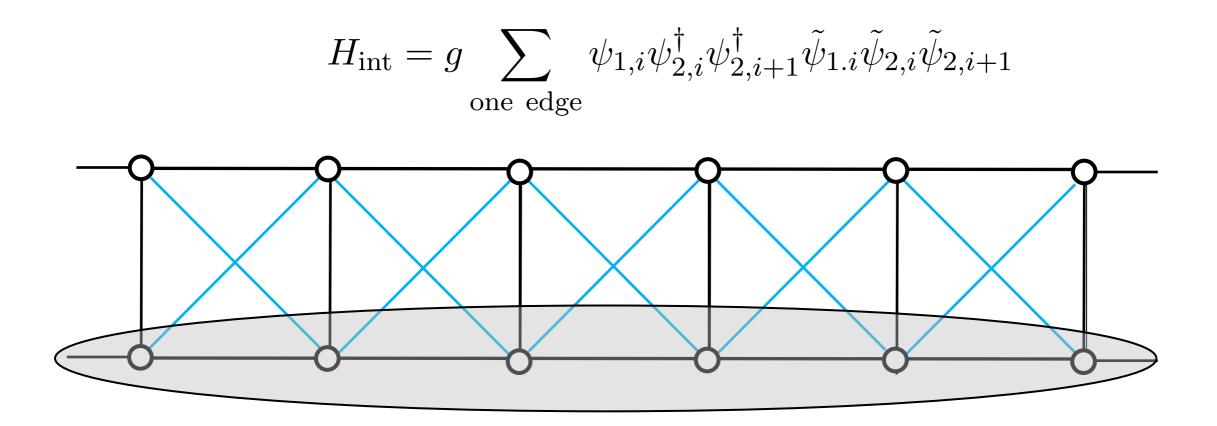
0345 Model on the Lattice

This was recently revisited for the 3450 model.



0345 Model on the Lattice

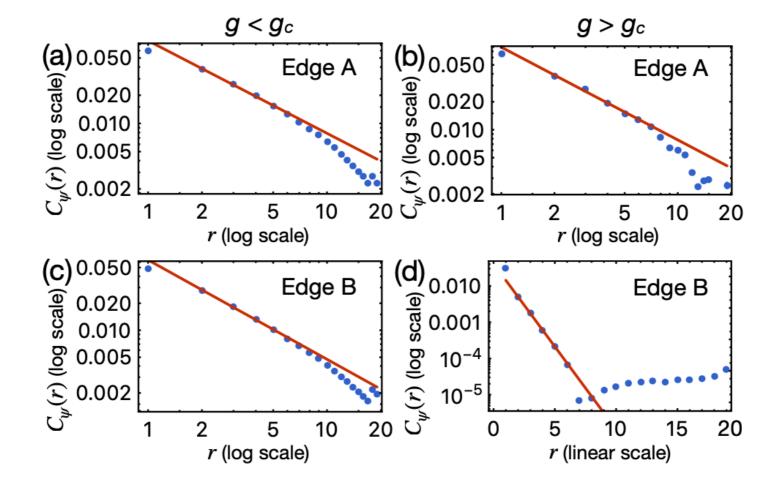
Turn on interactions only on one edge



Simulate using tensor networks (DMRG) to avoid sign problem

0345 Model on the Lattice: Results

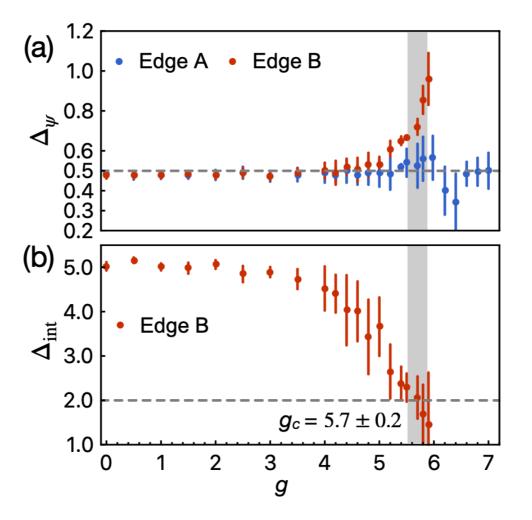
Correlation function $C(r) = \langle \psi_{I,i+r}^{\dagger} \psi_{I,i} \rangle$



Thank you for your attention

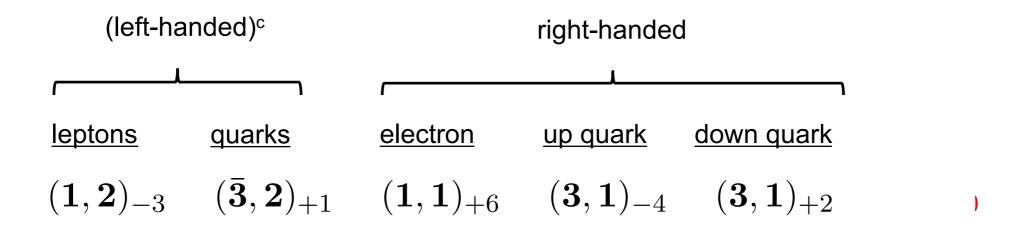
0345 Model on the Lattice: Results

Dimensions of operators



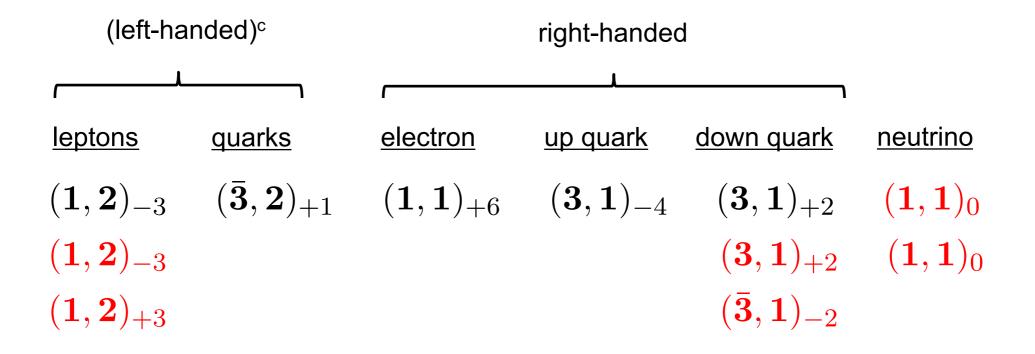
$$G = SU(3) \times SU(2) \times U(1)$$

Razamat and Tong '20



$$G = SU(3) \times SU(2) \times U(1)$$

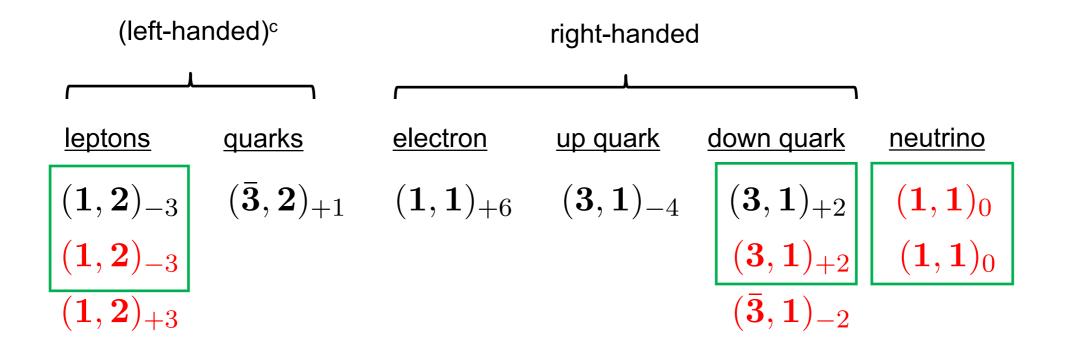
Razamat and Tong '20



• Add three further pairs of fermions

$$G = SU(3) \times SU(2) \times U(1)$$

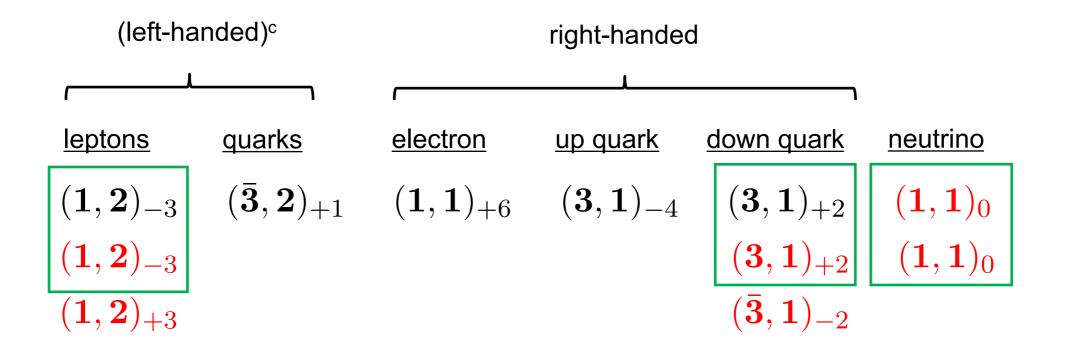
Razamat and Tong '20



- Add three further pairs of fermions
- Gauge the H = SU(2) symmetry

$$G = SU(3) \times SU(2) \times U(1)$$

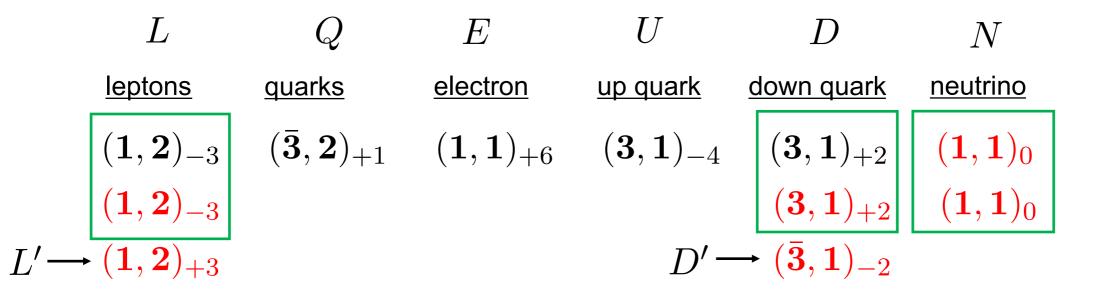
Razamat and Tong '20



- Add three further pairs of fermions
- Gauge the H = SU(2) symmetry
- Supersymmetrize.
 - Add scalar superpartners for all fermions, and a H = SU(2) gaugino

$$G = SU(3) \times SU(2) \times U(1)$$

Razamat and Tong '20



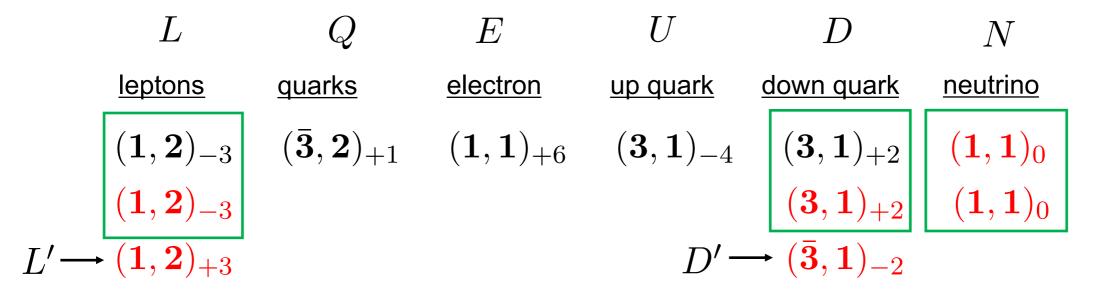
- The H = SU(2) gauge theory is coupled to six doublets.
- This confines without breaking the global symmetry.
- The low-energy physics consists of 15 free mesons:

 $\epsilon_{ab}L^aL^b \qquad \epsilon_{ijk}D^iD^j \qquad L^aD^i \qquad L^aN \qquad D^iN$

Seiberg '94

$$G = SU(3) \times SU(2) \times U(1)$$

Razamat and Tong '20



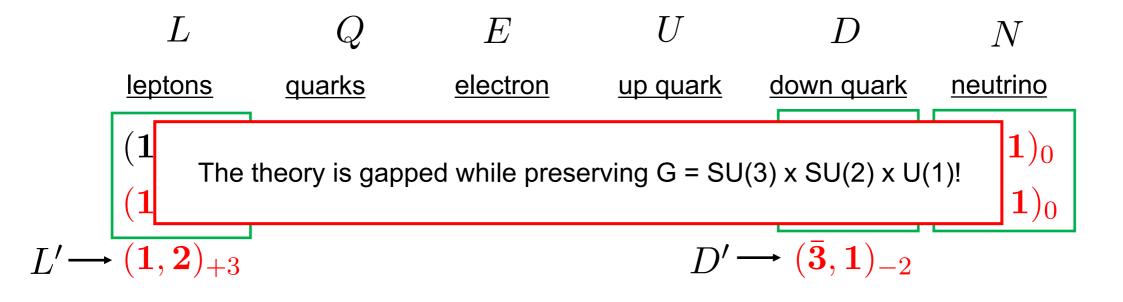
If we add the superpotential

$$\mathcal{W}_{UV} = \epsilon_{ab}L^a L^b E + \epsilon_{ijk}D^i D^j U^k + \epsilon_{ab}L^a D^i Q^b_i + \epsilon_{ab}L^a N L'^b + D^i N D'_i$$

But, in the infra-red, this becomes

$$\mathcal{W}_{IR} = \widetilde{E}E + \widetilde{U}_k U^k + \widetilde{Q}_b^i Q_i^b + \widetilde{L}^b L'^b + \widetilde{D}_i D'_i$$

$$G = SU(3) \times SU(2) \times U(1)$$
 Razamat and Tong '20



If we add the superpotential

$$\mathcal{W}_{UV} = \epsilon_{ab} L^a L^b E + \epsilon_{ijk} D^i D^j U^k + \epsilon_{ab} L^a D^i Q^b_i + \epsilon_{ab} L^a N L'^b + D^i N D'_i$$

But, in the infra-red, this becomes

$$\mathcal{W}_{IR} = \widetilde{E}E + \widetilde{U}_k U^k + \widetilde{Q}_b^i Q_i^b + \widetilde{L}^b L'^b + \widetilde{D}_i D'_i$$