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Things To Do With a Quantum Field Theory

• Give a mass to all fields?

• Put the theory on a space with boundary?

• Put the theory on a lattice (with on-site action of G)?

*omitting many caveats!

Take a quantum field theory with a symmetry G.  When can we do the following 
while preserving G:



Things To Do With a Quantum Field Theory

Take a quantum field theory with a symmetry G.  When can we do the following 
while preserving G:

A naive answer: You can do this when the symmetry G is vector-like.

But it’s harder when the symmetry is chiral.

• Give a mass to all fields?

• Put the theory on a space with boundary?

• Put the theory on a lattice (with on-site action of G)?



Things To Do With a Quantum Field Theory

A conjecture: we can do all of these when the ‘t Hooft anomaly for G vanishes. 

(This is the same requirement that is needed if you want to gauge G.)

e.g. for G=U(1) the ‘t Hooft anomaly is 
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• Give a mass to all fields?

• Put the theory on a space with boundary?

• Put the theory on a lattice (with on-site action of G)?

Take a quantum field theory with a symmetry G.  When can we do the following 
while preserving G:



Symmetric Mass Generation

Idea:    Give a mass to a bunch of fermions transforming 
under a chiral symmetry G without breaking G.
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Note:              does not work. 



First Example: Chiral Fermion Parity

The first example was by Fidkowski and Kitaev ‘09, with an extension by Xiaoliang Qi.

Consider N massless Majorana fermions in d=1+1 

For a review, see Tong and Turner ”Notes on 8 Majorana Fermions” ‘19 
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Can we gap the fermions preserving chiral fermion parity                            ? 

Answer: Only if N is a multiple of 8.
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First Example: Chiral Fermion Parity

• Clearly a mass term                                     breaks the Z2 symmetry. 

• The Gross-Neveu term gives a mass but spontaneously breaks Z2

• However, there is a clever four-fermion term that does the job  
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Another Example in d=1+1: The 3450 Model 

Consider two left-moving Weyl fermions     and two right-moving Weyl fermions

Take charges under a G = U(1) symmetry to be

Can we gap these fermions preserving G?
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Another Example in d=1+1: The 3450 Model 

There are several ways to do this. One is to introduce a U(1) gauge field together 
with an additional scalar    . 
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gauged
global
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• H is Higggsed. At low energies we have just the massless fermions.

• The scalar decouples and the H = U(1) confines, leaving behind 
two massless fermions
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and

Haldane ‘95; Wang and Wen ‘18; Tong ’21



Another Example in d=1+1: The 3450 Model 
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gapless phase symmetric gapped phase

BKT transition

Add the (dangerously) irrelevant operator
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In the confining phase, this flows to the symmetry-preserving mass term
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Symmetric Mass Generation in d=3+1

It is possible to gap one generation of the Standard Model 
without breaking electroweak symmetry SU(2) x U(1)

Razamat and Tong ‘20



Symmetric Mass Generation on the Lattice

• Many examples of symmetric mass generation on the lattice

• This is like the older PMS phase, but with a continuum limit.

Ayyar and Chandrasekharan, 
Catterall et al, Shaich, A. Hassenfratz



Chiral Fermions on the Lattice

Old idea of Eichten and Preskill ’86: 

Turn on irrelevant 4-fermion coupling to gap the fermion doublers
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strong coupling restricted 
to this part of Brillouin zone



Chiral Fermions on the Lattice

Old idea of Eichten and Preskill ’86: 

Turn on irrelevant 4-fermion coupling to gap the fermion doublers
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strong coupling restricted 
to this part of Brillouin zone

Problem: it doesn’t work! 

Golterman, Pechter and Rivas ‘93, Shamir ’93, Chen, Giedt, Poppitz ‘07



0345 Model on the Lattice

This was recently revisited for the 3450 model. 

Zheng, Zou, Wang, You ‘22
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FIG. 1. (Color online.) (a) The fermion hopping pattern
on the two-leg ladder lattice for the first layer. Arrow link:
t1e

i⇡/4 (along the arrow direction), solid link: t2, dashed link:
�t2. This (2+1)D thin strip is e↵ectively the same as (1+1)D
by regarding the finite-width dimension as internal degrees of
freedom of the (1+1)D system. (b) Energy dispersion for
t1 = 1, t2 = 0.5. Gapless edge modes are strictly localized
on the two boundaries of the ladder. (c) Schematic diagram
showing the configuration of the four flavors of chiral fermions
on the edges.

achieving our goal of regularizing chiral fermions in the
3-4-5-0 model on a lattice.

The 3-4-5-0 Model. — The 3-4-5-0 model describes
four gapless complex fermions in (1+1)D,

S =

Z
dt dx

4X

I=1

 
†
I(i@t + ivI@x) I , (1)

with two left-moving modes  1, 2 (of v1 = v2 = +1)
and two right-moving modes  3, 4 (of v3 = v4 =
�1). The fermions are charged under a chiral U(1)
symmetry:  I ! eiqI✓ I , with the charge assignment
(q1, q2, q3, q4) = (3, 4, 5, 0) (hence the name “3-4-5-0”).
This seemly peculiar charge assignment is designed to
cancel the U(1) symmetry’s ’t Hooft anomaly, which is
an Z-class perturbative local anomaly. The anomaly in-
dex is given by

P
I vIq

2
I = 32 + 44 � 52 � 02 = 0, which

vanishes for the charge assignment of the 3-4-5-0 model.
The model is also free of the gravitational anomaly. As
the field theory is anomaly-free, it should admit a lattice
regularization in (1+1)D spacetime.

Following Wang-Wen’s chiral fermion model [26, 33],
the (1+1)D chiral fermions and their mirror partners
can be viewed as the chiral edge modes on the oppo-
site boundaries of a (2+1)D multi-layer Chern insulator
[59], each layer with a Chern number ±1. To construct
the chiral fermions on a lattice, we start with four lay-
ers of Chern insulators on a two-leg ladder as shown in
Fig. 1(a). On each lattice site i, we introduce four com-
plex fermions, described by the annihilation operators
 i,I (with I = 1, 2, 3, 4 being the layer/flavor index). The
fermion hopping is governed by the lattice Hamiltonian

Hfree =
4X

I=1

X

i,j

(tI,ij 
†
I,i I,j + h.c.), (2)

where the hopping parameters tI,ij are non-zero only on
the nearest and next-nearest neighbor links. For the first
two layers I = 1, 2, the nearest neighbor hoppings are
purely imaginary with tI,ij = ei⇡/4t1 if j ! i follows the
link direction, and the next-nearest neighbor hoppings
are real with tI,ij = t2 (or �t2) on the solid (or dashed)
links, as shown in Fig. 1(a). We fix t1 = 1 and t2 = 0.5.
This hopping pattern ensures a ⇡ Berry flux through each
square plaquette, realizing a minimal model of Chern in-
sulator in each layer. For the last two layers I = 3, 4, the
hopping parameters are complex conjugated, such that
the band Chern numbers in the last two layers are oppo-
site to those of the first two layers.

The lattice model has a four-site unit cell that repeats
along the ladder direction, hence the lattice momentum
k along the ladder direction is a good quantum num-
ber, and the system is e↵ectively (1+1)D. In each layer,
the single-particle energy dispersion (band structure)
is shown in Fig. 1(b), which includes two gapped bulk
bands together and two gapless edge modes of opposite
velocities (localized separately on the two boundaries).
Stacking all layers together, the lattice model realizes
four chiral fermions (as two pairs of counter-propagating
modes) on each edge, as illustrated in Fig. 1(c). Since the
four layers of fermions are decoupled at the free fermion
level, we are free to assign them with the 3,4,5,0 chiral
U(1) charges respectively, such that the low-energy edge
modes realize the 3-4-5-0 chiral fermions and their mir-
ror partners. We treat the edge A as the light (chiral
fermion) sector, and the edge B as the mirror sector (to
be gapped out). If we can generate a mass gap for the
edge B fermions only without breaking the chiral U(1)
symmetry, we will succeed in achieving a lattice regular-
ization of the 3-4-5-0 field theory Eq. (1) in this (1+1)D
system in terms of the gapless edge A fermions.

The fact that the U(1) ’t Hooft anomaly vanishes for
the 3-4-5-0 model indicates that it should be possible to
gap out the edge B fermions trivially without breaking
the chiral U(1) symmetry. However, the chiral U(1) sym-
metry is restrictive enough to prevent the gapping to hap-
pen on the free-fermion level. Therefore, we resort to the
idea of gapping out the mirror fermions by interactions,
which has been previously explored by Chen, Giedt and
Poppitz (CGP) [18] in the 3-4-5-0 lattice model, where all
U(1) symmetry allowed interactions are included. How-
ever, the CGP result shows a singular non-local behavior
for the gauge field polarization tensor in the mirror sec-
tor, which indicates the mirror sector still has surviving
gapless modes charged under the gauge field. The reason
could be that the CGP approach introduces too many
interaction terms, and some of them are harmful. In or-
der to achieve the SMG, the fermion interaction must be
carefully selected to satisfy the gapping condition (i.e. the
interaction operators must be self-bosonic and mutual-
bosonic in terms of the operator braiding statistics [60–
63]), as elaborated in recent works [26, 33]. It turns out
that the lowest order interactions that satisfy the gapping
condition are the following six-fermion local interactions

charge 3 and 4
charge 5 and 0

charge 5 and 0
charge 3 and 4



0345 Model on the Lattice

Turn on interactions only on one edge 

Zheng, Zou, Wang, You ‘22
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Simulate using tensor networks (DMRG) to avoid sign problem



0345 Model on the Lattice: Results

Zheng, Zou, Wang, You ‘22

Correlation function 
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Thank you for your attention



0345 Model on the Lattice: Results

Zheng, Zou, Wang, You ‘22

Dimensions of operators



fermions that sit in vector-like representations of G. We write the original fermions in black
(omitting their names), with three additional pairs of fermions in red,

(1,2)�3 (3̄,2)+1 (1,1)+6 (3,1)�4 (3,1)+2 (1,1)0

(1,2)�3 (3,1)+2 (1,1)0

(1,2)+3 (3̄,1)�2

Crucially, the additional fermions sit in vector-like representations of G; it is trivial to give
masses to each of the pairs without breaking G. Note that we have added two fermions that
are singlets under G; one of these can play the role of the right-handed neutrino.

The additional fermions mean that we have three pairs with the same quantum numbers:
these are the fermions that sit in the first two lines above. The next step is to introduce an
SU(2) gauge symmetry (not to be confused with the SU(2) global symmetry in G) under
which these pairs of fermions transform as a doublet. The upshot is that we have a collection
of fermions transforming as

Fermion SU(2)gauge SU(3) SU(2) U(1)

l 2 1 2 �3
l0 1 1 2 +3
q 1 3̄ 2 +1
e 1 1 1 +6
u 1 3 1 �4
d 2 3 1 +2
d0 1 3̄ 1 �2
⌫ 2 1 1 0

At this stage, we introduce yet more fields to give a supersymmetric extension of this model.
These are scalar superpartners for each fermion listed above, a gaugino in the adjoint of
SU(2)gauge. The end result is a collection of chiral multiplets, transforming as

Field SU(2)gauge SU(3) SU(2) U(1) U(1)A U(1)R
L 2 1 2 �3 0 0
L0 1 1 2 +3 3 2
Q 1 3̄ 2 +1 �1 4/3
E 1 1 1 +6 0 2
U 1 3 1 �4 �2 2/3
D 2 3 1 +2 1 2/3
D0 1 3̄ 1 �2 2 4/3
N 2 1 1 0 �3 0

– 11 –

An Example: The Standard Model

quarksleptons electron up quark down quark neutrino

right-handed(left-handed)c
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Seiberg ‘94

• The H = SU(2) gauge theory is coupled to six doublets.

• This confines without breaking the global symmetry. 

• The low-energy physics consists of 15 free mesons:

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential

WUV = ✏abL
aLbE + ✏ijkD

iDjUk + ✏abL
aDiQb

i + ✏abL
aNL0b +DiND0

i (2.4)

where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.

From hereon, the story is familiar. The strong coupling dynamics consists of an SU(2)
supersymmetric gauge theory coupled to six doublets. This theory is know to exhibit s-
confinement [12, 13] and, in the infra-red is described by a collection of 15 meson fields,

Ẽ = ✏abL
aLb , Ũk = ✏ijkD

iDj , Q̃i
b = ✏abL

aDi , L̃b = ✏abL
aN , D̃i = DiN

The superpotential (2.4) descends to the infra-red where it becomes,

WUV = ẼE + ŨkU
k + Q̃i

bQ
b
i + L̃bL0b + D̃iD

0
i

This gaps all fields, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no problems generalising these re-
sults to many other chiral, anomaly free models. A useful list of s-confining theories, together
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fermions that sit in vector-like representations of G. We write the original fermions in black
(omitting their names), with three additional pairs of fermions in red,

(1,2)�3 (3̄,2)+1 (1,1)+6 (3,1)�4 (3,1)+2 (1,1)0

(1,2)�3 (3,1)+2 (1,1)0

(1,2)+3 (3̄,1)�2

Crucially, the additional fermions sit in vector-like representations of G; it is trivial to give
masses to each of the pairs without breaking G. Note that we have added two fermions that
are singlets under G; one of these can play the role of the right-handed neutrino.

The additional fermions mean that we have three pairs with the same quantum numbers:
these are the fermions that sit in the first two lines above. The next step is to introduce an
SU(2) gauge symmetry (not to be confused with the SU(2) global symmetry in G) under
which these pairs of fermions transform as a doublet. The upshot is that we have a collection
of fermions transforming as

Fermion SU(2)gauge SU(3) SU(2) U(1)

l 2 1 2 �3
l0 1 1 2 +3
q 1 3̄ 2 +1
e 1 1 1 +6
u 1 3 1 �4
d 2 3 1 +2
d0 1 3̄ 1 �2
⌫ 2 1 1 0

At this stage, we introduce yet more fields to give a supersymmetric extension of this model.
These are scalar superpartners for each fermion listed above, a gaugino in the adjoint of
SU(2)gauge. The end result is a collection of chiral multiplets, transforming as

Field SU(2)gauge SU(3) SU(2) U(1) U(1)A U(1)R
L 2 1 2 �3 0 0
L0 1 1 2 +3 3 2
Q 1 3̄ 2 +1 �1 4/3
E 1 1 1 +6 0 2
U 1 3 1 �4 �2 2/3
D 2 3 1 +2 1 2/3
D0 1 3̄ 1 �2 2 4/3
N 2 1 1 0 �3 0

– 11 –
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If we add the superpotential

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential
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where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.
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But, in the infra-red, this becomes

15 meson fields,

eE = ✏abL
aLb , eUk = ✏ijkD

iDj , eQi
b = ✏abL

aDi , eLb = ✏abL
aN , eDi = DiN

The superpotential (2.5) descends to the infra-red where it becomes a collection of mass terms.

WIR = eEE + eUkU
k + eQi

bQ
b
i + eLbL0b + eDiD

0
i

All fields are gapped, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no trouble generalising these results
to other chiral, anomaly free models using the many known s-confining theories [26–31]. Here
we briefly describe a few examples.

At heart, the example of the Standard Model described above was constructed by em-
bedding chiral representations of SU(3)⇥ SU(2)⇥ U(1)Y into

G = SU(6) with and 2 ⇤

through the more familiar grand unified embedding into SU(5) ⇢ SU(6). Symmetric mass
generation was then realised by viewing G as the global symmetry of an SU(2) gauge theory
with six fundamental chirals and its (conjugate) singlet mesons. A slightly more complicated
route realises G through an Sp(n) gauge theory, with six fundamentals and a traceless anti-
symmetric, again accompanied by its mesons. This theory is known to s-confine and, for
n � 2, preserves an G = SU(6)⇥ U(1) symmetry [27, 28].

Another interesting, anomaly free chiral representation is given by

G = SU(N) with and and 8 ⇤

In addition toG, the fermions have anH = SU(8) symmetry that acts on the anti-fundamentals.
For N = 5, we may gauge a G2 ⇢ SO(7) ⇢ H symmetry. that acts on 7 of the 8 anti-
fundamentals After suitable supersymmetrisation, the theory s-confines, yields a meson spec-
trum consisting of a , a , and a ⇤, which can then be paired with the gauge singlet
fermions to gap the system [29].

Relatedly, forN = 6 we may gauge a Spin(7) ⇢ H symmetry, with the 8 anti-fundamentals
transforming in the spinor representation. This results in a meson spectrum consisting of

and , which again can be paired with the gauge singlets [29].
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If we add the superpotential

where the additional fields from supersymmetry mean that the theory enjoys two further
symmetries, U(1)A and U(1)R. The R-symmetry acts on the fermions in L, Q, E, U and D
as the familiar B � L symmetry of the Standard Model.

All the symmetries listed are preserved by the gauge invariant superpotential

WUV = ✏abL
aLbE + ✏ijkD

iDjUk + ✏abL
aDiQb

i + ✏abL
aNL0b +DiND0

i (2.4)

where now a, b = 1, 2 are indices for SU(2) ⇢ G and i, j = 1, 2, 3 and indices for SU(3) ⇢ G.
It is simple to check that each of these terms is invariant under G.

From hereon, the story is familiar. The strong coupling dynamics consists of an SU(2)
supersymmetric gauge theory coupled to six doublets. This theory is know to exhibit s-
confinement [12, 13] and, in the infra-red is described by a collection of 15 meson fields,

Ẽ = ✏abL
aLb , Ũk = ✏ijkD

iDj , Q̃i
b = ✏abL

aDi , L̃b = ✏abL
aN , D̃i = DiN

The superpotential (2.4) descends to the infra-red where it becomes,

WUV = ẼE + ŨkU
k + Q̃i

bQ
b
i + L̃bL0b + D̃iD

0
i

This gaps all fields, preserving G.

2.4 Further Generalisations

Connoisseurs of supersymmetric gauge theories will have no problems generalising these re-
sults to many other chiral, anomaly free models. A useful list of s-confining theories, together
with the representations under the global symmetries in both UV and IR, can be found in
[29].

Another simple example arises with the global symmetry group G = SU(N), with a
Weyl fermion �̃ transforming in the symmetric representation and N + 4 Weyl fermions
 , each transforming in the anti-fundamental representation ⇤. The ’t Hooft anomaly again
vanishes, courtesy of

A ( ) = N + 4

In addition to G = SU(N), this collection of fermions admits an H = SU(N + 4) symmetry.
We gauge the SO(N + 4) ⇢ H. After supersymmetrisation, we have the field and symmetry
content

Field SO(N + 4) SU(N) U(1)R
Q N+ 4 ⇤ �2/N
M̃ 1 4/N

We subsequently add the superpotential

WUV = M̃ijQ
iQj
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