Banquet Logistics

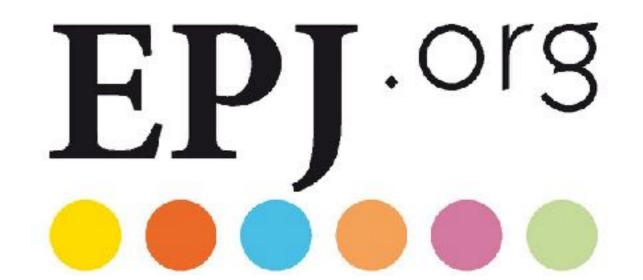
- Coaches will leave from Mount Pleasant
 - running between the Guild and the Metropolitan Cathedral
- If you've selected the optional stadium tour, look to board a coach at 17:00pm -*PLEASE* assist our team in making sure each of 3 coaches is full
- If you're going just for dinner, look to board a coach at 18:00pm
- Please wear your conference badge and lanyard
- For stadium tourists Anfield will insist on searching bags try to leave bags/laptops behind
- On arrival, there is a drinks reception from 18:30
- Once admitted to dining area at 19:30
 - (a) find a table and note the number 3 tables (4/5/6) are reserved
 - (b) notify any dietary requirements at the desk together with your table number
- There will be wine/water at the table, but you can purchase further drinks at the bar.
 Anfield is a cashless venue, so you will need contactless/Applepay etc.
- Coaches to return to UoL will leave opposite LFC club shop at 22:45, 23:15

LQCD@50

PHYSICAL REVIEW D

VOLUME 10, NUMBER 8

15 OCTOBER 1974


Confinement of quarks*

Kenneth G. Wilson Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850 (Received 12 June 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice) joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

Session chair: Chris Michael

Session sponsor:

