A Confederacy of Anomalies

A personal recollection of early years in lattice gauge theory ¹

Jan Smit

University of Amsterdam

¹not a balanced review! free after John Kennedy Toole, A Confederacy of Dunces, with one dunce (a + b) = 0

Prologue

1969: September, PhD student of S.A. Wouthuysen in Amsterdam 1970: started working on my own, e.g. on:

Glashow, Weinberg, Salam, Veltman, 'Higgs', Wilson, massive Yang-Mills, partons, renormalization group, chiral anomaly,...

1971:

my hero, Wilson, published article ² which contained a non-perturbative approximation to a path integral (in the continuum)

- no longer a magic trick for deriving Feynman diagrams

Prologue 1972

chiral anomalies should cancel ^{3 4}

judged this artificial – wanted non-perturbative UV-regulator

Spring: scalar field on a lattice

August: moved to LA, student of Robert J. Finkelstein at UCLA topic: massive YM in Schwinger's Source Theory

Christmas: non-Abelian gauge field on a lattice, 'Wilson action'

³C. Bouchiat, J. Iliopoulos, Ph. Meyer, An anomaly-free version of Weinberg's model, PLB38(1972)519

⁴D.J. Gross, R. Jackiw, *Effect of Anomalies on Quasi-Renormalizable* Theories, PRD6(1972)477

1973

testing perturbative continuum limit at one loop on $U(1)_V \times U(1)_A$ gauge-Higgs model coupled to one Dirac field: $\mathcal{L}_F = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + \bar{\psi} \left[g \gamma^{\mu} V_{\mu} + g_5 i\gamma^{\mu}\gamma_5 A_{\mu} + G(\sigma + i\gamma_5 \pi)\right]\psi$

'anomalous chiral gauge theory'

spatial cubic lattice, continuous time (just QM)

develop lattice methods

vector and axial-vector Ward-Takahashi identities exactly valid at finite lattice spacing

velocity-of-light counterterm etc.

vector selfenergy ('vacuum polarization'): correct *Lorentz-invariant form* but factor 8 too large

VVA and VV π triangle diagrams: zero

propagators and vertices periodic in spatial momentum space

fermion propagator

$$\left[i\gamma^0 k_0 + i\gamma^j P_j(k) + m\right]^{-1}, \quad P_j(k) = \frac{1}{a}\sin(ak_j)$$

 $8 = 2^3$ zeros of $P_j(k)$ at $ak_j = \{0, \pi\}$ contribute to continuum limit of vector selfenergy Tried to cure by: $P_j(k) = \frac{2}{a} \sin\left(\frac{ak_j}{2}\right)$ discontinuous \Rightarrow non-local *non-local, non-Lorentz covariant, UV divergent* continuum limit

- multiplicity not-ignorable
- doublers real particles?

decided to leave it 'for a while'

November: article with Robert ⁵

inspired by 6 investigated possibility of massive solution of massless YM, using Schwinger-Dyson equations 7

⁵Robert J. Finkelstein and JS, *Massive Gauge Field in Source Theory II*, Ann.Phys.88(1974)157

⁶J.M. Cornwall, R.E. Norton, *Spontaneous Symmetry Breaking without Scalar Mesons*, *Phys.Rev.D8*(1973)3338

⁷JS, Possibility that massless Yang-Mills fields generate massive vector particles, Phys.Rev.D10(1974)2473

Spring/Summer: seminar at UCLA by Wilson ⁸ bomb shell

lattice, confinement, strong coupling!

after seminar I did *not* tel him about my own lattice work, but mentioned problem with fermions. Wilson's answer:

add term $\propto \partial_\mu \bar{\psi} \partial_\mu \psi$

chiral symmetry should come back in continuum limit

November: PhD, Thesis:

Massive Vector Particles with Yang-Mills Couplings

- Source Theory + the Schwinger-Dyson eqns. article (lattice regularization only briefly mentioned)

⁸K.G. Wilson, Confinement of Quarks, Phys.Rev.D10(1974)2445 → E ∽ Q ~

January: back to Amsterdam

- depressed - could not write article about my lattice results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

turned to Regge pole theory description of experimental scattering results at CERN

together with new PhD student Luuk Karsten

1977

September: SLAC Summer Institute: lecture by Sidney Drell on Lattice Field Theory

Avoid fermion doubling: ⁹ $P_j(k) = k_j$, $ak_j \in \{-\pi, \pi\}$

I suggested problems (expected from $P_j(k) = \frac{2}{a} \sin\left(\frac{ak_j}{2}\right)$):

non-local divergences in continuum limit of gauge theory

Drell: "You ought to write this up!"

 \Rightarrow returned to LGT, with Luuk Karsten

⁹S.D. Drell, M. Weinstein, S. Yankielowicz, Strong Coupling Field Theories. 2. Fermions and Gauge Fields on a Lattice, Phys.Rev.D14(1976)1627 () ⇒ ⇒ ⇒ ⊃ < ?

1978

catch up with exponentially rising number of publications in particular $^{10\ 11\ 12\ 13\ 14\ 15}$ (overlooked $^{16\ 17})$

¹⁰K.G. Wilson, 13th International School of Subnuclear Physics: *New Phenomena in Subnuclear Physics*, CLNS-321 (1975)

¹¹J.B. Kogut and L. Susskind, *Hamiltonian Formulation of Wilson's Lattice Gauge Theories*, Phys.Rev.D11(1975)395

¹²L. Susskind, Lattice fermions, Phys.Rev.D16(1977)3031

¹³B.E. Baaquie, *Gauge Fixing and Mass Renormalization in the Lattice Gauge Theory*, Phys.Rev.D16(1977)2612

¹⁴H.S. Sharatchandra, *The Continuum Limit of Lattice Gauge Theories in the Context of Renormalized Perturbation Theory*, Phys.Rev.D18(1978)2042

¹⁵J. Shigemitsu, *Spectrum calculations in lattice gauge theory using Wilson's fermion method*, Phys.Rev.D18(1978)1709

¹⁶M. Lüscher, Construction of a Selfadjoint, Strictly Positive Transfer Matrix for Euclidean Lattice Gauge Theories, Commun.Math.Phys.54(1977)283

¹⁷M. Creutz, Gauge Fixing, the Transfer Matrix, and Confinement on a Lattice, Phys.Rev.D15(1977)1128

calculated continuum limit of 'anomaly (triangle) diagrams' with Drell-Weinstein-Yankielowicz (DWY) fermion method & find indeed non-local, non-covariant, divergent contributions ¹⁸

... also in gauge-field selfenergy diagrams ¹⁹

- 'doubler fermions' replaced by non-local & non-covariant contributions

¹⁸L.H. Karsten, JS, *Axial Symmetry in Lattice Theories*, Nucl.Phys.B144(1978)536

¹⁹L.H. Karsten, JS, *The Vacuum Polarization with SLAC Lattice Fermions*, Phys.Lett.B85(1979)100 September: Cargèse Summer Institute

Wilson describes numerical RG computations ²⁰

& mentions MC computations by Creutz ²¹ (eye opener for me)

and strong coupling calculations, with Padé extrapolation to weak coupling, by Kogut, Pearson and Shigemitsu $^{\rm 22}$

²⁰K.G. Wilson, *Monte Carlo Calculations for the Lattice Gauge Theory*, NATO Sci.Ser.B 59 (1980) 363-402

²¹M. Creutz, Solving Quantized SU(2) Gauge Theory, Brookhaven,
 September 1979; Asymptotic Freedom Scales, Phys.Rev.Lett.45(1980)313
 ²²J.B. Kogut, R.B. Pearson, J. Shigemitsu, The QCD beta Function at
 Intermediate and Strong Coupling, Phys.Rev.Lett. 43(1979)484 (2000) (2000)

November: PhD Luuk Karsten. Thesis:

On Lattice Gauge Theories and On Backward Pion-Nucleon Scattering

- doubler fermions at $ak_\mu=\pi$ are genuine particles
- chiral charges: $g_5
 ightarrow g_5 Q_5$, $Q_5 = (-1)^n$,
- n = number of π s in four-vector ak giving sin $(ak_{\mu}) = 0$

$$\sum Q_5 = 0$$

- anomalies cancel in triangle diagrams !

in the $U(1)_V \times U(1)_A$ model a Wilson-type mass term made gauge invariant with the Higgs field $\sigma + i\pi$ led to the tree-graph level formula

$$m_{\mathrm{F}} = m + rac{r}{a} \sum_{\mu} [1 - \cos(ak_{\mu})]$$

with $m=G\langle\sigma
angle$ and $r/a=G_{
m W}\langle\sigma
angle$ (Wilson's r=1)

- in a continuum limit $a \rightarrow 0$ with $r = a \tilde{r}$ this would result in a mass spectrum:

$$m_{\rm F} = m + 2n\,\tilde{r}\,, \quad n = 1, 2, 3, 4$$

subsequently the doublers $(n \ge 1)$ seem then be removable by sending $\tilde{r} \to \infty$, *except* for triangle diagrams where they become the chiral anomaly in the axial-vector WT identity (thesis and ²³)

²³L.H. Karsten, *The Lattice Fermion Problem and Weak Coupling Perturbation Theory*, in Field Theoretical Methods in Elementary Physics, NATO Sci.Ser.B55(1980)235 However, $\tilde{r}\to\infty$ would imply $G_W\to\infty$ and one would be led to strong coupling dynamics . . .

Luuk moved to Stanford

we still had to write-up publish the results extend the calculations applying to QCD with Wilson fermions at fixed r

February: Banks and Caashers stimulating paper on chiral symmetry breaking $^{\rm 24}$

May: strong coupling paper 25 (\approx simultaneously with 26) Hamiltonian formulation, $N_{\rm f}$ flavors, N colors, two orders in 1/N

$$S_{\text{mass}} = \bar{\psi} M \psi - \bar{\psi} W \psi$$

$$\bar{\psi} W \psi = \frac{ar}{2} \sum_{x,j} \left[\bar{\psi}(x) U_j(x) \psi(x+a_j) + \bar{\psi}(x+a_j) U_j^{\dagger}(x) \psi(x) \right]$$

Greensite and me discovered that our write-ups nearly had same title)

- anti-ferromagnetic ground state

Nambu-Goldstone bosons (including vector mesons)

 $m^2 \propto M \langle \bar{\psi} \psi \rangle \,, \quad \langle \bar{\psi} \psi \rangle \propto N$

²⁴T. Banks, A. Casher, *Chiral Symmetry Breaking in Confining Theories*, NPB169(1980)103

²⁵JS, Chiral Symmetry Breaking in QCD: Mesons as Spin Waves, NPB175(1980)307

increasing r: increase $M > M_{\rm cr}$, critical mass $M_{\rm cr}(r,g) \propto r^2$, (avoid broken parity phase when $M < M_{\rm cr}$)

for 0.7 < $r \le 1$ vector mesons (ρ , K^*) have lost their NGB character, but *not* the charged pseudo scalars (π^{\pm} , K)

'current quark mass' of flavor a: $m_a = M_a - M_{
m cr}$

$$m_{ab}^2 \propto (m_a + m_b), \quad a \neq b$$

neutral: $m_{aa}^2 > m_{ab}^2$ in next order 1/N quantitatively: effective strength of anomaly ('U(1) problem')

'dynamical quark mass' of oldfashioned quark model $m_{
m dyn}$

$$m_V \simeq 2 m_{\rm dyn} + m_a + m_b$$

1980 cont.

for $M = M_{\rm cr}$, chiral *non-singlet* charge Q_{ab}^5 commutes with effective Hamiltonian and creates zero energy GB state $Q_{ab}^5|0\rangle$ out of vacuum

chiral *singlet* charge Q_{aa}^5 is anomalous for r > 0

currents were derived from a lattice version of the Standard Model that generated the *r*-parameter in terms of a 'Wilson-Yukawa coupling' $G_{\rm W}$ and the vev of the Higgs field Φ : $\tilde{r} = G_{\rm W} \langle \Phi \rangle$

decoupling doublers would require $G_{\rm w} \rightarrow \infty$??

matrix elements of currents (meson decay constants f_{π} , γ_{ρ} , etc) did not come out very well (neither very badly)

anomaly paper with Luuk ²⁷ (errata in ²⁸)

-
$$ar{\psi}(M_{
m cr}-W)\psi
ightarrow$$
 flavor- $U(1)$ anomaly

first of No-Go proofs by Nielsen and Ninomiya ^{29 30 31}

²⁸R. Groot, J. Hoek, JS, Normalization of Currents in Lattice QCD, NPB237(1984)111

²⁹H.B. Nielsen, M. Ninomiya, *Absence of Neutrinos on a Lattice. 1. Proof by Homotopy Theory*, NPB185(1981)20; NPB195(1982)541 (erratum)

³⁰Absence of Neutrinos on a Lattice. 2. Intuitive Topological Proof, NPB193(1981)173

³¹A No-Go Theorem for regularizing chiral fermions, PLB105(1981)219

²⁷Luuk H. Karsten, JS, *Lattice fermions: species doubling, chiral invariance and the triangle anomaly*, NPB183(1981)103

No-Go proof by Karsten ³² using the Poincaré-Hopf theorem which relates the index of a vector field on a manifold (in casu $P_{\mu}(k)$) to the Euler number of the manifold (momentum space T^4)

- weak coupling calculations with staggered fermions by Sharatchandra, Thün and Weisz, including chiral anomaly and ratio of A-scales $^{\rm 33}$

- papers by Lüscher, Münster and Weisz concerning the roughening transition (causing a $-\pi/(12r)$ term in the potential), e.g. ³⁴ ³⁵ ³⁶

³²L.H. Karsten, Lattice fermions in Euclidean space-time, PL104B(1981)315
 ³³H.S. Sharatchandra, H.J. Thun, P. Weisz, Susskind Fermions on a Euclidean Lattice. NPB192(1981)205

³⁴G. Münster, P. Weisz, *On the Roughening Transition in Nonabelian Lattice Gauge Theories*, NPB180(1981)330

³⁵M. Lüscher, G. Münster, P. Weisz, *How Thick Are Chromoelectric Flux Tubes* ?, NPB180(1981)1

³⁶M. Lüscher, Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, NPB180(1981)317

with Kawamoto, Euclidean effective action at strong coupling (staggered- and Wilson-fermions): $^{37\ 38}$

meson and baryon fields, large N approximation

- for r = 0 transformation to staggered-fermion form exhibits $U(4N_{\rm f}) \times U(4N_{\rm f})$ symmetry, broken spontaneously to $U(4N_{\rm f})$ with NG bosons and massive baryons

- for r = 1 effective action has chiral symmetry at $M = M_{\rm cr}$ up to 2nd order in the NG fields, but at 4th order the symmetry is broken, as shown in the π - π scattering amplitude

similar results (naive fermions): 39

³⁷N. Kawamoto, JS, Effective Lagrangian and Dynamical Symmetry Breaking in Strongly Coupled Lattice QCD, NPB192(1981)100

³⁸J. Hoek, N. Kawamoto, JS, *Baryons in the Effective Lagrangian of Strongly Coupled Lattice QCD*, NPB199(1982)495

³⁹H. Kluberg-Stern, A. Morel, O. Napoly, B. Petersson, *Spontaneous Chiral* Symmetry Breaking for a U(N) Gauge Theory on a Lattice, NPB190(1981)504

1983

spin, flavor and symmetry group of ('reduced') staggered fermions with method for loop calculation $^{\rm 40}$

related work $^{\rm 41}$ $^{\rm 42}$ $^{\rm 43}$

PhD Jaap Hoek 44 45 46

 40 Cees van den Doel, JS, Dynamical Symmetry Breaking in Two Flavor SU(N) and SO(N) Lattice Gauge Theories, NPB228(1983) 122

⁴¹F. Gliozzi, *Spinor Algebra of the One Component Lattice Fermions*, NPB204(1982)419

⁴²H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, *Flavors of Lagrangian Susskind Fermions*, NPB220 (1983)447

⁴³P. Becher & H. Joos, *Geometric fermions*

⁴⁴Thesis: Effective Action Calculation in Lattice QCD, Amsterdam, 1983
 ⁴⁵Strong Coupling Expansion of the Generating Functional for Gauge
 Systems on a Lattice with Arbitrary Sources, J.Comp.Phys. 49(1983)265
 ⁴⁶Strong Coupling Expansion of the SU(3) and U(3) Effective Actions,
 J.Comp.Phys. 54(1984)245

September: Cargèse Summer Institute

Wilson lectured 47

- I mentioned to him my work on LGT at UCLA in 1972-1973

- Wilson's generous answer: ask your promotor to send me a description of what you did and I shall mention it in future reviews

and so it was done

⁴⁷K.G. Wilson, *Monte Carlo Renormalization Group and the Three-Dimensional Ising Model*, Progress in Gauge Field Theory, NATO Sci.Ser.B 115 (1984) 589-604 Swift in 48 used essentially the same method as I did (cf. $^{49})$ for deriving currents for the 'spin wave paper'

a U(1) version was analyzed a few years later by Hands and Carpenter $^{\rm 50}$

⁴⁸P.V.D. Swift, The Electroweak Theory on the Lattice, PLB145(1984)256
 ⁴⁹JS, Fermions on a lattice, Act.Phys.Pol.B17(1986)531
 ⁵⁰S.J. Hands, D.B. Carpenter, Lattice Sigma Model and Fermion Doubling, NPB266(1986)285

$\gtrsim 1984$

lots of inspiring papers were being published, on Monte-Carlo-RG scaling, string tension and potential, hadron spectrum, critical temperature

- desire for similar computational work in Amsterdam and the arrival of the Cyber 205 supercomputer led to taking part in larger collaborations 51 52

Peter Hasenfratz sent me gauge-field configurations:

"they are beautiful !"

 $^{51}A.$ König, K.H. Mütter, K. Schilling, JS, Large distance propagators for hadrons on a 56 \times 16 3 lattice, PLB157(1985)421

⁵²K.C. Bowler, F. Gutbrod, P. Hasenfratz, U. Heller, F. Karsch, R.D. Kenway, I. Montvay, G.S. Pawley, JS, D.J. Wallace, *The* β-function and potential at $\beta = 6.0$ and 6.3

1984 - 1986

more on staggered fermions: 53 54 55 56 57

related work: 58 59

⁵³Maarten F.L. Golterman, JS, *Relation Between QCD Parameters on the Lattice and in the Continuum*, PLB140(1984)392

⁵⁴M.F.L. Golterman, JS, *Self-Energy and Flavor Interpretation of Staggered Fermions*, NPB245(1984)61

⁵⁵M.F.L. Golterman, JS, *Lattice Baryons With Staggered Fermions*, NPB255(1985)328

⁵⁶M.F.L. Golterman, *Staggered Mesons*, NPB273(1986)663

⁵⁷M.F.L. Golterman, *Irreducible Representations of the Staggered Fermion Symmetry Group*, NPB278(1986)417

⁵⁸G.W. Kilcup, S.R. Sharpe, *A Tool Kit for Staggered Fermions*, NPB283(1987)493

⁵⁹A. Coste, C. Korthals Altes, O. Napoly, *Calculation of the Nonabelian Chiral Anomaly on the Lattice*, NPB289(1987)645 \gtrsim 1986 U(1) problem and topological charge can instantons explain the large mass of the η' meson?

anomalous divergence of the axial flavor-singlet current

$$egin{array}{rcl} \partial_\mu \left(ar{\psi} i \gamma_\mu \gamma_5 \psi
ight) &=& 2m \, ar{\psi} i \gamma_5 \psi + 2i N_{
m f} \, q & U(1) \; {
m current} \ q &=& rac{1}{32 \pi^2} \, \epsilon_{\kappa \lambda \mu
u} \; {
m Tr} \; {
m G}_{\kappa \lambda} \, {
m G}_{\mu
u} & {
m topological} \; {
m charge \; density} \end{array}$$

derived lattice version ⁶⁰ of the Witten-Veneziano relation

$$\begin{split} m_{\eta'}^2 - \frac{1}{2} m_{\eta}^2 - \frac{1}{2} m_{\pi^0}^2 &= \frac{6}{f_{\pi}^2} \chi \qquad \qquad N_{\rm f} = 3 \\ \chi &= \int d^4 x \langle q(x) \, q(0) \rangle_{|_{\rm quenched}} \\ &\simeq (180 \, {\rm MeV})^4 \quad {\rm topological \ susceptibility} \end{split}$$

U(1) problem and topological charge (cont.)

which led to a 'fermionic determination' of topological charge $^{61\ 62}$

$$\overline{Q} = \operatorname{Tr} \kappa_P m \gamma_5 (\not \! D + m + M_{\rm cr} - W)^{-1} \quad \text{Wilson fermions}$$
$$= \frac{1}{4} \operatorname{Tr} \kappa_P m \Gamma_5 (\not \! D + m)^{-1} \quad \text{staggered fermions}$$

⁶¹J.C. Vink, Staggered Fermions, Topological Charge and Topological Susceptibility in Lattice QCD, PLB212(1988)483; and references there-in ⁶²M.L. Laursen, JS, J.C. Vink, Small-Scale Instantons, Staggered Fermions and the Topological Susceptibility, NPB343(1990)522; and references there-in U(1) problem and topological charge (cont.)

other definitions: geometrical ⁶³ ⁶⁴ 'cooling' e.g. ⁶⁵ ⁶⁶ ⁶⁷

⁶³M. Lüscher, Topology of Lattice Gauge Fields, CMP85(1982)39
 ⁶⁴A. Philips, D. Stone, Lattice Gauge Fields, Principal Bundles and the Calculation of Topological Charge, CMP103(1986)399

⁶⁵Y. Iwasaki, T. Yosie, *Instantons and Topological Charge in Lattice Gauge Theory*, PLB131(1983)159

⁶⁶M. Teper, Instantons in the Quantized SU(2) Vacuum: A Lattice Monte Carlo Investigation, PLB162(1985)357; The Topological Susceptibility in SU(2) Lattice Gauge Theory: An Exploratory Study, PLB171(1986)81

⁶⁷E-M. Ilgenfritz, M.L. Laursen, G. Schierholz, M. Muller-Preussker, H. Schiller, *First Evidence for the Existence of Instantons in the Quantized SU(2) Lattice Vacuum*, NPB268(1986)693 in a model with only quarks or leptons with (possibly!) decoupled doublers, anomalies may be carried by the Higgs field 68

decoupling of doublers was studied by focusing on Higgs-fermion interaction without gauge fields

⁶⁸E. D'Hoker and E. Fahri, *Decoupling a fermion in the standard* electro-weak theory, NPB248(1984)77

\gtrsim 1986 Standard Model: Wilson-Yukawa (cont.)

SU(2) invariant combinations $\Phi^{\dagger}P_{\rm L}\Psi$ and $\bar{\Psi}\Phi P_{\rm R}$ put in the Wilson-Yukawa 'mass term'

$$S_{\text{Fmass}} = (y + 4w)\bar{\Psi}_{x}(\Phi_{x}P_{\text{R}} + \Phi_{x}^{\dagger}P_{\text{L}})\Psi_{x}$$
$$-\frac{w}{2}\sum_{\mu} \left[\bar{\Psi}_{x}\Phi_{x}P_{\text{R}}\Psi_{x+\hat{\mu}} + \bar{\Psi}_{x}\Phi_{x+\hat{\mu}}^{\dagger}P_{\text{L}}\Psi_{x+\hat{\mu}} + \text{h.c.}\right]$$

- continuum limit at the weak coupling FM(W)-PMW phase boundary: as expected, doublers are heavier than target fermions but not really removable because of triviality ⁶⁹

⁶⁹W. Bock, A.K. De, C. Frick, K. Jansen, T. Trappenburg, *Search for an upperbound of the renormalized Yukawa coupling in a lattice fermion-Higgs model*, NPB371(1992)683

\gtrsim 1986 Standard Model: Wilson-Yukawa (cont.)

- at the disjoint strong coupling FM(S)-PMS phase boundary: lots of papers by groups of aficionados (& a nice Amsterdam-Jülich collaboration) with the conclusion:

- removing doublers possible but on the way out they become fermion-Higgs bound-state SU(2) singlets ! $^{70\ 71}$

- only at the FM(W)-PMW phase boundary it is possible to *approximate* the physics of the Standard Model (doublers still present)

mirror fermion models appear to fare better in this respect ⁷²

⁷⁰M.F.L. Golterman, D. Petcher, JS, *Fermion-interactions in models with Strong Wilson-Yukawa Couplings*, NPB370(1992)51 and references therein ⁷¹W. Bock, A.K. De, JS, *Fermion masses at strong Wilson-Yukawa Couplings in the Symmetric Phase*, NPB388(1992)243 and references therein ⁷²C. Frick, L. Lin, I. Montvay, G. Münster, M. Plagge, T. Trappenberg, H. Wittig, *Numerical simulation of heavy fermions in an* $SU(2)_{\rm L} \otimes SU(2)_{\rm R}$ *symmetric Yukawa model*, NPB397(1993)431 \gtrsim 1992 Standard Model: staggered fermion

... it did not work out well

$\gtrsim 1992$ changing the game

D.B. Kaplan: domain walls (Y. Shamir use for QCD)R. Narayanan & H. Neuberger: overlapGinsparg-Wilson: Lüscher

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

meanwhile

we enjoyed work, e.g. by

... too many names, gave up