

International Symposium on Lattice Field Theory 2024 Designing weight regularizations based on Lefschetz thimbles to stabilize complex Langevin

In collaboration with Kirill Boguslavski and David I. Müller

Paul Hotzy, 29.07.2024

Content & motivation

- 1. Introduction: Complex Langevin & Lefschetz thimbles
- 2. Cosine model: A toy model where CL fails • Explicit check of the criterion of correctness • Weight regularizations: a cure for the wrong convergence

- 3. Reduced Polyakov loop model • Thimble structure depends on the coupling
- 4. SU(N) Polyakov loop model • Extending regularization ideas to SU(N) gauge theory
- 5. Outlook and conclusion

2

Introduction to the **complex Langevin method** and **Lefschetz thimbles**

3

What we are trying to achieve? Computing... the non-deterministic polynomial hard way...

Expectation values:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int dx \, e^{-S(x)} \mathcal{O}(x), \quad Z = \int dx \, e^{-S(x)}$$

- If S is real, $e^{-S(x)}/Z$ is a probability density \rightarrow Monte Carlo
- If S is complex this does not apply \rightarrow Sign problem

We achieved the first results in real-time Yang-Mills results in 1+3D (see <u>arXiv:2312.03063</u>)

... at small bare couplings ...

 \rightarrow extension likely needs more work to be comp. feasible

Introduction to complex Langevin (1/2)

A naive generalization of real Langevin

Langevin equation:

$$\partial_{\theta} x(\theta) =$$

- $K(z(\theta)) = -S'(z(\theta)) \text{describes classical evolution}$ • Drift term:
- Gaussian noise: $\eta(\theta)$ encodes the quantum fluctuations

Real action S: fields A are characterized by the limiting probability density $P(\theta \rightarrow \infty) \propto e^{-S}$

Complex action S: drift term is complex – we need to complexify the dyn. variables $x \rightarrow z = x + iy$

Introduction to complex Langevin (2/2)A less naive generalization of real Langevin

Expectation values with complex Langevin:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int_{D} dx \exp[-S(x)] \mathcal{O}(x) = \lim_{\Theta \to \infty} \int_{\theta_0}^{\theta_0 + \Theta} d\theta \mathcal{O}(z(\theta))$$

- Correspondence to Fokker-Planck equation:
- **Criterion of correctness** we know when it fails:
 - Density of drift magnitude has to decay exponetially •

$$p(u;\theta) = \int dx \int dy \,\delta(u - u(z)) P(x, y; \theta), \, u(z)$$

• But what shall we do if the criterion is not satisfied?

$$\partial_{\theta} P(x, y; \theta) = L^T P, \quad L^T = \partial_x (\partial_x + \operatorname{Re} K) + \partial_y \operatorname{Im} K$$

(7) = 1

6

Lefschetz thimble approach Application of the Cauchys theorem to the path integral

• Complexify the dynamical variables: $x \rightarrow z = x + iy$

$$\begin{aligned} Z = \int_{D} dz \, \exp(-S(z)) = \sum_{\sigma} n_{\sigma} e^{-i\operatorname{Im}\left[S(z_{\sigma})\right]} \int_{D_{\sigma}} dz \, e^{-\operatorname{Re}\left[S(z)\right]} =: \sum_{\sigma} n_{\sigma} e^{-i\operatorname{Im}\left[S(z_{\sigma})\right]} Z_{\sigma} \\ (n_{\sigma} \text{ number of intersections of } K_{\sigma} \text{ and } D, \ z_{\sigma} \text{ are stationary points of the action } S) \end{aligned}$$

- Thimbles (SD paths): $D_{\sigma} := \{z(t_f) \in \mathbb{C} : z(-\infty) = z_{\sigma}, \dot{z}(t_f) = -\overline{S'}(z(t_f))\}$
- Co-thimbles (SA paths): $K_{\sigma} := \{z(t_f) \in \mathbb{C} : z(-\infty) = z_{\sigma}, \dot{z}(t_f) = \overline{S'}(z(t_f))\}$

Expectation values with Lefschetz thimbles:

$$\langle \mathcal{O} \rangle = \frac{\sum_{\sigma} n_{\sigma} e^{-i \operatorname{Im} \left[S(z_{\sigma}) \right]} Z_{\sigma} \langle \mathcal{O} \rangle}{\sum_{\sigma} n_{\sigma} e^{-i \operatorname{Im} \left[S(z_{\sigma}) \right]} Z_{\sigma}}$$

Nothing but intuition and a hunch... Connection between Lefschetz thimbles and complex Langevin

Similarities between CL and LT:

- 1. Analytical continuation of theories
- 2. Introduction of auxiliary times θ and t_f
- 3. CL drift term -S' and flow equation $-\overline{S'}$

Complex Langevin is sometimes considered to be an "important sampling near to thimbles"

 \rightarrow rather an important sampling near attractive stationary points

- Connection is not well understood is the criterion of correctness for CL linked to LT?
- We use the Lefschetz thimble as a tool to regularize for complex Langevin! •

8

Total failure of complex Langevin: **Complex cosine model**

9

Complex cosine model Non-trivial but fully controlled model with wrong convergence of CL

Weight function of complex cosine model:

$$\rho(x) = e^{-i\beta\cos(x)}, \, \beta \in \mathbb{R}$$

Stationary solution of the stochastic process: $P_{\rm st}(x,y) = \frac{1}{4\pi\cosh^2(y)}$

Criterion of correctness is not satisfied:

- Emergence of boundary terms [arXiv:1808.05187]
- Decay of density of drift magnitude (right figure)
- Analytic expectation values (bottom figure): С

$$\langle \mathcal{O}_k \rangle = \int_{[-\pi,\pi]} dx \,\rho(x) \cos(kx) = (-1)^k$$

 $J_k(\beta)$

 $J_0(\beta)$

Thimbles of the cosine model

Simple structure with obvious consequences

- Established "criterions of correctness" or **mostly diagnostic**
 - Decay of drift magnitude
 - Boundary terms

11

- Lefschetz thimbles might allow for a more detailed understanding of the Langevin dynamics:
 - Attractive/repulsive stationary points and singularities
 - Weights and probability currents

Designing weight regularizations If you cannot simulate the theory — change the theory

- Add a **regularization term** to the original weight
- We modify/"regularize" the weight with three objectives
 - Stationary points should be close to the real line
 - **Singularities** that connect to contributing thimbles should be **on the real line** 2.

$$\rho_R(x) := \rho(x) + R(x)$$

Similiar ideas have been investigated before: Z. Cai et al arXiv:2109.12762 F. Attanasio et al arXiv:1808.04400 A. C. Loheac et al arXiv:1702.04666 S. Tsutsui et al arXiv:1508.04231

. . .

3. We want to avoid any asymptotic structure of contributing thimbles ("tamed" thimbles)

In general those objectives are not achievable for neutral regularization — expectation values change and we need to compute corrections!

Curing the criterion of correctness Regularization cures the wrong convergence issue

Regularization of the cosine model

$$\rho_R(x) = e^{i\beta\cos(x)} + R(x)$$
$$R(x) = r(x^2 - \pi^2) - \exp(i\beta), r \in$$

Regularization term achieves our goals:

- Polynomial term leads to one stationary point at the origin
- 2. Constant shifts singularities to the $\pm \pi$
- 3. No asymptotic structure of thimbles, for $|r| \rightarrow \infty$ we have the drift:

Im
$$\left[K_R(x+iy)\right] = -y \left[\frac{1}{(x-\pi)^2 + y^2} + \frac{1}{(x-\pi)^2 + y^2}\right]$$

 \mathcal{U}

Corrections for regularizations Apriori knowledge allows computation of correction term

- **Correction term** for regularized expectation values $\langle \mathcal{O} \rangle_{\rho} = \langle \mathcal{O} \rangle_{\rho_R} + \operatorname{Corr}_R(\mathcal{O})$ $\operatorname{Corr}_{R}(\mathcal{O}) = (\langle \mathcal{O} \rangle_{\rho_{R}} + \langle \mathcal{O} \rangle_{R})Q, \quad Q = \frac{Z_{R}}{Z_{\rho}}$
- How to compute the bad guy Q?

 \rightarrow Apriori knowledge of the original system — observable independence

Dyson-Schwinger equation:

Option for the cosine model:

A model where CL fails, depending on the coupling: **Polyakov loop model**

15

Reduced Polyakov loop model (1/2)Reducing a gauge theory to a scalar theory

• **Polyakov loop action** in SU(2) (SU(3) is in progress):

$$S = -\beta \operatorname{Tr}(P), \, \beta \in \mathbb{C}$$

- Gauge freedom leads to equivalence to the one-link model
- **Reduction of the Haar measure**

•
$$\int_{SU(2)} dU e^{\beta \operatorname{Tr}(U)} \rightsquigarrow \int_{-\pi}^{\pi} dx \, \sin^2(x) e^{2\beta \cos(x)}$$

Identify observables and (scalar) effective action

•
$$S(x) = -2\beta \cos(x) - \ln(\sin(x)^2)$$
, $Tr(U)$

Reduced Polyakov loop model (2/2)Regulazing the reduced Polyakov — different model, same idea

The same ideas as for the cosine model apply:

 $\rho(x) = \exp[2\beta\cos(x) + \ln(\sin(x)^2)]$

$$\rightsquigarrow \rho_R(x) = \rho(x) + R(x) = \rho(x) + r(x^2 - \pi^2)$$

Polyakov loop model (1/2)Can we generalize these regularizations to SU(N) gauge theories?

• Action of the Polyakov loop model: $S[\{U_i\}]$

- SU(N) is compact, for SU(2) the trace of the links
- The first thing that comes to mind ...

 $\rho[\{U_i\}] = \exp[\beta \operatorname{Tr}[P]] \rightsquigarrow \rho_R[\{U_i\}] = \rho[\{U_i\}] = \rho[$

... and it works.

however, we observed that we do not need it for large enough r.

$$= -\beta \operatorname{Tr}\left[\prod_{i} U_{i}\right]$$

s is bounded: $\operatorname{Tr}[U] \in [-2,2]$

$$\{U_i\}] + R[\{U_i\}] = \rho(x) + r\left\{(\mathrm{Tr}[P]/N_c)^2 - 1\right\}$$

• Sidenote: $SL(N_c, \mathbb{C})$ is non-compact! We use the gauge cooling technique to stabilize the system -

1	8

Polyakov loop model (2/2)A first step towards lattice gauge theories

Without regularization:

Conclusion

- Complex Langevin often fails due to the slow decay of the drift density
- Criterion of correctness is linked to the structure of the Lefschetz thimbles
- We cure the wrong convergence issue by regularizing the weight function:
 - Design regularizations to obtain a **compact thimble structure**
 - We obtain corrections from apriori knowledge using Dyson Schwinger equations

 \rightarrow Solution to the complex cosine model and the Polyakov loop model \rightarrow Extension to lattice Yang-Mills theory is work in progress

Goal: application to real-time Yang-Mills theory

Thank you for your attention!

Extensions to actual lattice gauge theory Locality and extensivity of the weight function and regularization

• Consider SU(N) Yang-Mills theory on an $N_s^3 \times N_t$ lattice with the Wilson action

 $\rho = \exp(-S) =$

• 'Global' regularization: $\rho_R = \rho + R \rightarrow \text{global drift term, extensivity leads to problems$

'Local' regularization: $\rho_R = [(\rho_x + R_x) \rightarrow \text{correction procedure becomes complicated}]$ X

Ideas / work in progress:

- reweighting, but with respect to a complex weights (by design no hard overlap problem).
- **kernel transformaltion** that admit similar Lefschetz thimbles.

$$= \prod_{x} e^{-\frac{1}{g^2} \sum_{\mu \neq \nu} \rho_{\mu\nu} \operatorname{Tr} \left[U_{x,\mu\nu} - 1 \right]} =: \prod_{x} \rho_x$$

• We can achieve desirable thimbles structures with multiplicative regularizations — essentially

We develop a <u>mathematical</u> connection between thimbles and CL that allows us to **design**

22