BBGKY hierarchy for quantum error mitigation

Theo Saporiti (theo.saporiti@cea.fr)*, Oleg Kaikov, Vasily Sazonov and Mohamed Tamaazousti* Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Motivation

Numerical simulation of **many-body** physical systems is classically difficult. Such systems can be studied for instance by

- ▶ **Monte Carlo** methods, but they suffer the **sign problem**
- ▶ **Hierarchies**, but their **truncation** introduces inaccuracies

Quantum computers to avoid both issues: they are **noisy**, but that can be **mitigated**. *How can the BBGKY hierarchy help to mitigate quantum errors?*

BBGKY hierarchy [\[1\]](#page-0-0)

Consider a quantum spin model of sites $S = \{1, \ldots, N\}$ with

The time evolution of the system is obtained by **Trotterization**, with time steps U of duration Δt .

$$
H = \frac{1}{2} \sum_{i \in S} h_i^{\mu} \sigma_i^{\mu} + \frac{1}{4} \sum_{\substack{i,j \in S \\ i < j}} V_{ij}^{\mu \nu} \sigma_i^{\mu} \sigma_j^{\nu}
$$

Let $A \subseteq S$ with $\{\mu_i\}_{i \in A}$ be a Pauli string. The BBGKY equation associated to A of $\left\{\mu_i\right\}_{i\in A}$ directions is

$$
\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \prod_{i \in A} \sigma_i^{\mu_i} \right\rangle = \sum_{\substack{i,j \in A \\ i \neq j}} \frac{V_{ij}^{\mu_i \nu}}{2} \varepsilon_{\mu_j \nu \lambda} \left\langle \sigma_j^{\lambda} \prod_{k \in A \setminus \{i,j\}} \sigma_k^{\mu_k} \right\rangle \n+ \sum_{i \in A} h_i^{\lambda} \varepsilon_{\mu_i \lambda \nu} \left\langle \sigma_i^{\nu} \prod_{j \in A \setminus \{i\}} \sigma_j^{\mu_j} \right\rangle \n+ \sum_{\substack{i \in A \\ j \notin A}} \frac{V_{ij}^{\mu \nu}}{2} \varepsilon_{\mu_i \mu \lambda} \left\langle \sigma_i^{\lambda} \sigma_j^{\nu} \prod_{k \in A \setminus \{i\}} \sigma_k^{\mu_k} \right\rangle
$$

$$
\frac{\mathrm{d}}{\mathrm{d}t}\langle n\rangle \quad = \quad \langle n-1\rangle \qquad \langle n\rangle \qquad \langle n+1\rangle
$$

Different choices of A generate a **hierarchy** of equations, each of which composed of a **polynomial** in n amount of terms, which in principle can be used to mitigate the effects of quantum errors.

with parameters $(x, \lambda, l_0, m/g) = (2, 1, 0, 10^{-3})$. Measure the **total charge** and **particle number** observables

Zero noise extrapolation (ZNE) [\[2\]](#page-0-1)

Different **unitary foldings** give different realizations of the same quantum circuit. Each realization produces a noisy observable

> [3] T. Angelides P. Naredi A. Crippa K. Jansen S. Kühn I. Tavernelli D.S. Wang. First-Order Phase Transition of the Schwinger Model with a Quantum Computer. 12 2023.

$$
\langle n \rangle (\varepsilon) = \langle n \rangle_0 + a_1 \varepsilon + \dots + a_d \varepsilon^d \quad \xrightarrow{\varepsilon \to 0} \quad \langle n \rangle_0 \approx \langle n \rangle
$$

Improving ZNE with BBGKY

FRANCE

univel

PARIS-SACLAY

The proposed $\langle n \rangle_0$ are interpolated in time with a Bernstein polynomial, giving access to time derivatives. The former are then required to satisfy the additional BBGKY $\boldsymbol{\mathsf{constraints}},$ producing an $\boldsymbol{\mathsf{improved}}$ $\langle n \rangle_{\emptyset}$ extrapolation.

Preliminary results

Consider the lattice Schwinger model [\[3\]](#page-0-2) of $N = 4$ sites at initial state $|0101\rangle$

$$
H = \frac{x}{2} \sum_{i=1}^{N-1} \left(\sigma_i^x \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y \right) + \frac{1}{2} \sum_{\substack{i,j \in S \\ i < j}} (N - j + \lambda) \sigma_i^z \sigma_j^z
$$

$$
+ \sum_{i=1}^{N-1} \left(\frac{N}{4} - \frac{1}{2} \left[\frac{i-1}{2} \right] + l_0(N - i) \right) \sigma_i^z - \frac{m}{g} \sqrt{x} \sum_{i \in S} (-1)^i \sigma_i^z
$$

$$
Q = \frac{1}{2} \sum_{i \in S} \sigma_i^z
$$

$$
P = \frac{N}{2} - \frac{1}{2} \sum_{i \in S} (-1)^i \sigma_i^z
$$

Schematically, for $n = |A|$,

The zero noise **extrapolation** $\langle n \rangle_0$ is obtained as the **noiseless limit** $\varepsilon \to 0$ of the least squares polynomial of degree d

References

[1] T. Cox. *Aspects of Decoherence in Qubit Systems*. PhD thesis, The University of British Columbia, 2019.

[2] K. Temme S. Bravyi J.M. Gambetta. Error Mitigation for Short-Depth Quantum Circuits. *Phys. Rev. Lett.*, 119(18):180509, 2017.