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Motivation

Numerical simulation of many-body physical systems is classi-
cally difficult. Such systems can be studied for instance by

▶ Monte Carlo methods, but they suffer the sign problem
▶ Hierarchies, but their truncation introduces inaccuracies

Quantum computers to avoid both issues: they are noisy, but
that can be mitigated. How can the BBGKY hierarchy help to
mitigate quantum errors?

Method

BBGKY hierarchy [1]

Consider a quantum spin model of sites S = {1, . . . , N} with
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Let A ⊆ S with {µi}i∈A be a Pauli string. The BBGKY equation
associated to A of {µi}i∈A directions is
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Schematically, for n = |A|,

〈n− 1〉 〈n〉 〈n+ 1〉=d
dt 〈n〉

Different choices of A generate a hierarchy of equations, each of
which composed of a polynomial in n amount of terms, which in
principle can be used to mitigate the effects of quantum errors.

Zero noise extrapolation (ZNE) [2]

The time evolution of the system is obtained by Trotterization,
with time steps U of duration ∆t.
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Different unitary foldings give different realizations of the same
quantum circuit. Each realization produces a noisy observable
measurement ⟨n⟩ at noise level ε.
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The zero noise extrapolation ⟨n⟩0 is obtained as the noiseless
limit ε → 0 of the least squares polynomial of degree d

⟨n⟩ (ε) = ⟨n⟩0 + a1ε + · · · + adε
d ε→0−−→ ⟨n⟩0 ≈ ⟨n⟩

Improving ZNE with BBGKY

The proposed ⟨n⟩0 are interpolated in time with a Bernstein polynomial, giving
access to time derivatives. The former are then required to satisfy the addi-
tional BBGKY constraints, producing an improved ⟨n⟩∅ extrapolation.
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Preliminary results

Consider the lattice Schwinger model [3] of N = 4 sites at initial state |0101⟩
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with parameters (x, λ, l0,m/g) = (2, 1, 0, 10−3). Measure the total charge and
particle number observables
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