QCD Anderson transition with overlap valence quarks on a twisted-mass sea

Robin Kehr

Institute for Theoretical Physics, Justus Liebig University Giessen

> Lattice Liverpool, July 29, 2024

[R. Kehr, D. Smith, L. von Smekal, PhysRevD.109.074512]

Motivation

Fundamental transitions in QCD

- Chiral restoration
- Deconfinement

Open question

Is there a relation between both transitions?

Motivation

Fundamental transitions in QCD

- Chiral restoration
- Deconfinement

Open question

Is there a relation between both transitions?

- QCD Anderson transition related to both phenomena
- In this work: Focus on relation to chiral restoration

Motivation

Fundamental transitions in QCD

- Chiral restoration
- Deconfinement

Open question

Is there a relation between both transitions?

- QCD Anderson transition related to both phenomena
- In this work: Focus on relation to chiral restoration
- Term Anderson transition originates from condensed matter physics [P. W. Anderson, 1958] [F. Evers, A. D. Mirlin, arXiv:0707.4378]
 - Describes metal-insulator transition in disordered solids
 - In metal phase low-lying eigenmodes of Hamiltonian delocalized ⇒ Conductivity
 - Above critical disorder all eigenmodes localized
 - $\Rightarrow \mathsf{No} \ \mathsf{conductivity}$

Anderson transition

- Delocalized modes separated from localized modes by energy threshold E_c (mobility edge)
- Above critical disorder strength w_c all modes localized

Anderson transition

- Delocalized modes separated from localized modes by energy threshold E_c (mobility edge)
- Above critical disorder strength w_c all modes localized

- Analogous transition in QCD [M. Giordano, T. G. Kovács, arXiv:2104.14388]
 - Hamilton operator
 - ↓ Dirac operator
 - Disorder strength
 - ↓ Temperature

Anderson transition

- Delocalized modes separated from localized modes by energy threshold E_c (mobility edge)
- Above critical disorder strength w_c all modes localized

- Analogous transition in QCD [M. Giordano, T. G. Kovács, arXiv:2104.14388]
 - Hamilton operator
 - ↓ Dirac operator
 - Disorder strength
 - ↓ Temperature
 - Low-lying modes localized
 - Higher ones delocalized
 - Below T₀ all modes delocalized (no mobility edge)

Relation to . . .

.. (de)confinement

• Eigenmodes tend to localize in sinks of Polyakov loop [L. Holicki, E.-M. Ilgenfritz, L. von Smekal, arXiv:1810.01130]

• Quenched QCD: T_0 coincides with deconfining phase transition

[T. G. Kovács, R. Á. Vig, arXiv:1706.03562]

Relation to . . .

.. (de)confinement

- Eigenmodes tend to localize in sinks of Polyakov loop [L. Holicki, E.-M. Ilgenfritz, L. von Smekal, arXiv:1810.01130]
- Quenched QCD: *T*₀ coincides with deconfining phase transition [T. G. Kovács, R. Á. Vig, arXiv:1706.03562]

... chiral symmetry restoration/breaking

- Previous work suggests $T_0 = T_{pc}$ (pseudocritical temperature of chiral crossover, pion mass $m_{\pi} \neq 0$)
- No Goldstone bosons in chiral limit, if near-zero modes localized [M. Giordano, arXiv:2206.11109]
 - \Rightarrow $T_0 \ge T_c$ (temperature of chiral phase transition, $m_{\pi} \rightarrow 0$)

Relation to . . .

.. (de)confinement

- Eigenmodes tend to localize in sinks of Polyakov loop [L. Holicki, E.-M. Ilgenfritz, L. von Smekal, arXiv:1810.01130]
- Quenched QCD: *T*₀ coincides with deconfining phase transition [T. G. Kovács, R. Á. Vig, arXiv:1706.03562]

... chiral symmetry restoration/breaking

- Previous work suggests $T_0 = T_{pc}$ (pseudocritical temperature of chiral crossover, pion mass $m_{\pi} \neq 0$)
- No Goldstone bosons in chiral limit, if near-zero modes localized [M. Giordano, arXiv:2206.11109]
 - \Rightarrow \textit{T}_{0} \geq \textit{T}_{c} (temperature of chiral phase transition, \textit{m}_{π} \rightarrow 0)
- Near-zero modes produce chiral condensate (Banks-Casher relation) [T. Banks, A. Casher, 1980]

Mixed action setup

Chiral lattice fermions

• Compute low-lying eigenmodes of overlap operator:

$$D_{
m ov} = rac{1+s}{a} \left(1+{
m sgn}\,K
ight)$$

• Wilson kernel: $K = aD_W - (1 + s)$

• Optimize locality with parameter s

Mixed action setup

Chiral lattice fermions

Compute low-lying eigenmodes of overlap operator:

$$D_{
m ov} = rac{1+s}{a} \left(1+{
m sgn}\, K
ight)$$

• Wilson kernel:
$$K = aD_W - (1 + s)$$

Optimize locality with parameter s

Gauge configurations

- From twisted mass at finite temperature collaboration [F. Burger, E.-M. Ilgenfritz, M. P. Lombardo, A. Trunin, arXiv:1805.06001]
 - Twisted mass Wilson fermions at maximal twist, Iwasaki gauge action
 - $N_f = 2 + 1 + 1$: two degenerate light, physical strange & charm quarks
 - T_{pc} from disconnected chiral susceptibility
 - Lattice spacing a from nucleon mass [C. Alexandrou et al., arXiv:1406.4310]

Overview of configurations

Set of ensembles	Ns	Nt	$T/T_{\rm pc}$
A370 a = 0.0936(13) fm $m_{\pi} = 364(15) \text{ MeV}$ $T_{pc} = 185(8) \text{ MeV}$	24	4	2.85(13)
		5	2.28(10)
		6	1.90(9)
		7	1.63(7)
		8	1.42(6)
		9	1.27(6)
		10	1.14(5)
		11	1.04(5)
		12	0.95(4)
	32	13	0.88(4)
		14	0.81(4)
D370 a = 0.0646(7) fm $m_{\pi} = 369(15) \text{ MeV}$ $T_{pc} = 185(4) \text{ MeV}$	32	3	5.50(13)
		6	2.75(7)
		14	1.18(3)
		16	1.03(2)
	40	18	0.92(2)
	48	20	0.83(2)
D210 a = 0.0646(7) fm $m_{\pi} = 213(9) \text{ MeV}$ $T_{pc} = 158(5) \text{ MeV}$	48	4	4.83(16)
		6	3.22(11)
		8	2.42(8)
		10	1.93(6)
		12	1.61(5)
		14	1.38(5)
		16	1.21(4)
		18	1.07(4)

N_s: Number of lattice sites in each space direction
Volume V = L³: L = aN_s

- N_t: Number of lattice sites in temporal direction
- Temperature:

$$\dot{}=rac{1}{aN_{t}}$$

Robin Kehr (ITP – JLU Giessen)

 Relative volume of eigenmode to eigenvalue λ:

$$r(\lambda) = \frac{P^{-1}(\lambda)}{N_{\rm s}^3 N_{\rm t}}$$

• $P(\lambda)$: inverse participation ratio

 Relative volume of eigenmode to eigenvalue λ:

$$r(\lambda) = \frac{P^{-1}(\lambda)}{N_{\rm s}^3 N_{\rm t}}$$

- $P(\lambda)$: inverse participation ratio
- Inflection point λ_{c} as estimate for mobility edge

 Relative volume of eigenmode to eigenvalue λ:

$$r(\lambda) = \frac{P^{-1}(\lambda)}{N_{\rm s}^3 N_{\rm t}}$$

- $P(\lambda)$: inverse participation ratio
- Inflection point λ_{c} as estimate for mobility edge

Fit Taylor polynomial

$$r(\lambda) = r_{c} + b(\lambda - \lambda_{c}) + 0(\lambda - \lambda_{c})^{2} + c(\lambda - \lambda_{c})^{3} + d(\lambda - \lambda_{c})^{4}$$

Robin Kehr (ITP - JLU Giessen)

Lattice Liverpool - 2024-07-29 6 / 11

A370: a = 0.0936(13) fm, $m_{\pi} = 364(15)$ MeV

 $T_{
m pc}=185(8)\,{
m MeV}$

Robin Kehr (ITP - JLU Giessen)

QCD Anderson transition

Lattice Liverpool - 2024-07-29 7 / 11

A370: a = 0.0936(13) fm, $m_{\pi} = 364(15)$ MeV

- Mobility edge vanishes around ${\cal T}_{
 m pc} = 185(8)\,{
 m MeV}$
- Consistent with earlier work
 - [M. Giordano et al., arXiv:1410.8392]
 - [L. Holicki, E.-M. Ilgenfritz,
 - L. von Smekal, arXiv:1810.01130]

D210: a = 0.0646(7) fm, $m_{\pi} = 213(9)$ MeV

- Reduce a, m_{π} , T_{pc}
- Increase volume: L = 3.10(3) fm
- Zero coincides with T_c [H.-T. Ding et al., arXiv:1903.04801]

$$\lambda_{\rm c}(T) = b \, (T - T_0)^{\nu}$$

D210: a = 0.0646(7) fm, $m_{\pi} = 213(9)$ MeV

- Reduce a, m_{π} , T_{pc}
- Increase volume: L = 3.10(3) fm
- Zero coincides with T_c [H.-T. Ding et al., arXiv:1903.04801]
- $\nu \approx 1.44$ for unitary Anderson model

[L. Ujfalusi, I. Varga, arXiv:1501.02147]

$$\lambda_{\mathsf{c}}(T) = b \, (T - T_0)^{\nu}$$

No vanishing at/above T_c ?

- Include new data to $T \approx T_{\rm pc} \& T \approx T_{\rm c}$
- Inflection points at 83(3) & 98(15) MeV

$$\lambda_{\rm c}(T) = b \, (T - T_0)^{\nu}$$

No vanishing at/above T_c ?

- Include new data to $T \approx T_{pc} \& T \approx T_{c}$
- Inflection points at 83(3) & 98(15) MeV
- Tendency of IP being higher for *T*_c
- Even with gradient flow & better statistics
- Already seen for D370

$$\lambda_{\mathsf{c}}(T) = b(T - T_0)^{\nu}$$

- Systematic error of estimate via inflection point
- Lattice artifacts: finite volume, spacing, unphysical pion mass
- Probably does not explain qualitative behavior of mobility edge

- Systematic error of estimate via inflection point
- Lattice artifacts: finite volume, spacing, unphysical pion mass
- Probably does not explain qualitative behavior of mobility edge

- Modes with low relative volume might scale with L^d, where d ∈ (0, 3]
 ⇒ Not localized
- Determine d [A. Alexandru, I. Horváth, arXiv:2103.05607]
 ⇒ Second mobility edge λ_{IR} = 0 above T_{IR} ∈ (200, 250) MeV

- Systematic error of estimate via inflection point
- Lattice artifacts: finite volume, spacing, unphysical pion mass
- Probably does not explain qualitative behavior of mobility edge

- Modes with low relative volume might scale with L^d, where d ∈ (0, 3]
 ⇒ Not localized
- Determine *d* [A. Alexandru, I. Horváth, arXiv:2103.05607] \Rightarrow Second mobility edge $\lambda_{IR} = 0$ above $T_{IR} \in (200, 250)$ MeV
- Modes below $\lambda_{\rm IR}$ delocalized, higher ones localized
- For lower temperatures $\lambda_{\rm IR}$ might rise and annihilate $\lambda_{\rm c}$

Conclusion and outlook

- Inflection point of $r(\lambda)$ does not vanish at T_c
- Annihilation of both mobility edges possible scenario
 - \Rightarrow Without near-zero modes ${\it T}_0$ could still be at ${\it T}_c$
 - \Rightarrow More interesting quantity would be intersection point

Conclusion and outlook

- Inflection point of $r(\lambda)$ does not vanish at T_c
- Annihilation of both mobility edges possible scenario
 - \Rightarrow Without near-zero modes T_0 could still be at T_c
 - \Rightarrow More interesting quantity would be intersection point
- Estimate quality of inflection point via finite-size analysis for low $N_{\rm t}$
- Configurations with physical pion masses available
 ⇒ Reduce computational costs: UV-smoothing of configurations
- Determination of λ_{IR} computationally still very expensive
 ⇒ Estimate intersection point by other means, e.g. via ULSD

Conclusion and outlook

- Inflection point of $r(\lambda)$ does not vanish at T_c
- Annihilation of both mobility edges possible scenario
 - \Rightarrow Without near-zero modes \mathcal{T}_0 could still be at \mathcal{T}_c
 - \Rightarrow More interesting quantity would be intersection point
- Estimate quality of inflection point via finite-size analysis for low $N_{\rm t}$
- Configurations with physical pion masses available
 ⇒ Reduce computational costs: UV-smoothing of configurations
- Determination of λ_{IR} computationally still very expensive
 ⇒ Estimate intersection point by other means, e.g. via ULSD

Thank you!