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• How do adjoint fields influence the confining nature of a theory? Pure SU(N) 
gauge theory confines; what about theories with adjoint matter?
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‣ Theory of a Majorana fermion coupled to an SU(N) gauge 
field in the adjoint representation with Minkowski action:
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Majorana fermion field
• Toy model for confinement: confining 

for , deconfining for .m > 0 m = 0

Z. Komargodski et. al. 
Symmetries and strings of 

adjoint QCD. 
JHEP 03 (2021) 103.

J. Donahue, et. al. Confining 
Strings, Infinite Statistics and 

Integrability. Phys. Rev. D 
101 (2020) 8, 081901.

R. Dempsey et. al. Adjoint 
Majorana  at Finite N. 

JHEP 04 (2023) 107.
QCD2

(Computation of the  
spectrum with DLCQ  

at ).N = 2,3,4

https://inspirehep.net/literature/100330
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 on the latticeQCD2

• First study of  with LGT was published this year. 

‣ Computed Polyakov loop , static quark potential, chiral condensate, and 
string tension for a number of . 

‣ Used two discretizations: Wilson and reweighted overlap. 
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G. Bergner,  S. Piemonte, M. Ünsal  
JHEP 07 (2024) 048.

• Our calculation uses a Wilson discretization on a Euclidean  lattice, and 
the Wilson action for the gauge field . 

‣ Dirac operator:

L × T
Uμ(x)

DW(x, y) = 1 δx,y − κ
2

∑
μ=1

[Vμ(x)(1 − γμ)δx+ ̂μ,y + VT
μ (y)(1 + γμ)δx− ̂μ,y]

Hopping parameter κ =
1

2m + 4
I. Montvay. Majorana fermions on 
the lattice. hep-lat/0108011 (2001).

adjoint links Vab
μ (x) ≡ 2 Tr[U†

μ(x)taUμ(x)tb]

https://inspirehep.net/literature/2774571
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§ 6.5. Lattice Gauge Theory Setup

6.5 Lattice Gauge Theory Setup

The data and figures presented throughout this section will be for the set of ensembles
shown in Table 6.1. Each ensemble is generated with N = 2 colors, although it is
planned to generate configurations at larger N (N = 3, 4, 5). Representative plots
shown in the remaining sections will be of the L ⇥ T = 20 ⇥ 20 ensemble, which has
a large enough lattice size that the physics is representative of the other ensembles,
with sufficient statistics to produce a strong signal. Figures generated on the other
ensembles in Table 6.1 will be shown in Appendix L.

L T �  Ncfgs

10 10 3.125 0.138889 90
12 12 4.5 0.15 90
14 14 6.125 0.159091 90
16 16 8.0 0.166667 90
18 18 10.125 0.173077 90
20 20 12.5 0.178571 90
22 22 15.125 0.183333 90
24 24 18.0 0.1875 76
26 26 21.125 0.191176 58
28 28 24.5 0.194444 45

Table 6.1. Parameters for the weakly-coupled lattice ensembles first used in this
study. Each study was performed on a 2-dimensional lattice with spacing L⇥T with
N = 2 adjoint colors. The gauge coupling is �, and the fermion hopping parameter is
. The total number of independent configurations (after thermalization) generated
on each ensemble is Ncfgs.

All code for this project (RHMC implementation, correlator measurements, and
fitting) is implemented in Python and can be found in the adjoint_qcd Github repos-
itory. The ensembles of Table 6.1 were generated on personal computers. Ensembles
are now being generated using MIT’s SuperCloud computing cluster [296].

To test that the RHMC code was sampling the correct distribution, two ensembles
were generated for each set of parameters in Table 6.1. For each set of parameters,
the first ensemble was seeded with a cold start (Uµ(s = 0) = 1N), and the second
ensemble was seeded with a hot start (Uµ(s = 0) taken to be a random SU(N)

matrix). Four gauge observables were monitored on each configuration: the expected
plaquette value,

hPi ⌘ 1

LT

X

x2⇤

hP(x)i, (6.62)

199
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=
1
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(pf DW)2 = det DW

Majorana Fermions on the Lattice
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L × T = 20 × 20
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Static Quark Potential
• The static quark potential  is extracted by fitting the  Wilson loop 
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 to the functional form,
V(r) r × t

W(r, t)

7

•  is fit to the linear ansatz  to extract the string tension . 

‣  is used to set the scale of each ensemble.
V(r) V(r) = A + σr σ

σ

Patrick Oare, MITPatrick Oare, MIT
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• Excite mesonic states with 1-momentum  with the Dirac bilinear  for 
: 

‣ In ,  are parity even, and  are parity odd.

p χΓ(t; p)
Γ ∈ {1,γ5, γ0, γ1}

d = 2 {1,γ1} {γ5, γ0}
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• Excite mesonic states with 1-momentum  with the Dirac bilinear  for 
: 

‣ In ,  are parity even, and  are parity odd.

p χΓ(t; p)
Γ ∈ {1,γ5, γ0, γ1}

d = 2 {1,γ1} {γ5, γ0}

• Compute two-point correlators at fixed momentum p to extract the ground 
state in each sector. 
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Scalar BilinearsΓ = 1 Γ = γ1

Pseudoscalar Bilinears Γ = γ0Γ = γ5
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Effective Mass, Pseudoscalar Sector
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projected onto lattice irreps to yield operator basis .ℬp
Γ(t)

shift between fieldsp =

• Construct the correlator matrix,

and solve the Generalized Eigenvalue Problem (GEVP) to evaluate variational 
bounds  on the low-lying spectrum,E(eff)

n
λ(k)(t, t0) ∼ e−Ek(t−t0)
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Low-Lying Spectrum and the GEVP

12

−log
λ(t + 1)

λ(t)

, , maximum shift 3.Γ = γ5 t0 = 0

1.6135(4)

≈ 2.50

≈ 3.33

≈ 2.87
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Four-Fermion Operators
• Two additional operators may be added to the  action consistent with its 

symmetries (  for  colors):
QCD2

𝒪1 = 𝒪2 N = 2

13

A. Cherman et al., 
SciPost Phys. 8 (2020) 5, 072.

https://scipost.org/SciPostPhys.8.5.072
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• Certain discretizations of  action may 
radiatively generate these operators. 

‣ Non-zero  indicates that a coupling  
for  is generated at finite .

QCD2

⟨𝒪1⟩
𝒪1 a

A. Cherman, M. Neuzil. 
Phys. Rev. D 109 (2024) 10, 105014.

they appear to preserve the noninvertible 0-formsymmetry of
2DQCD[Adj]; see the discussion in, e.g., Ref. [52] regarding
the decoupling of left- and right-handed excitations in light
of the results of Ref. [22]. The light-cone approaches also
have the nice feature of being relatively inexpensive numeri-
cally, at least at largeN. They also have some disadvantages,
ranging from challenges with directly studying spontaneous
symmetry breaking using light-cone methods—see, e.g.,
Refs. [53–56]—as well as difficulties with calculating
correlation functions of large Wilson loops, which are the
most natural observables for studying the physics of confine-
ment and the realization of the ZN 1-form symmetry.
Another approach, which is especially widely used to

study gauge theories in d > 2, is to perform numerical
Monte Carlo calculations of Euclidean correlation functions
using lattice gauge theory. So far, the only lattice gauge
theory calculations of 2D adjoint one-flavor QCD in the
massless limit is Ref. [57], which constructed a remarkable
Hamiltonian lattice discretization that correctly captures all
of the invertible symmetries of the model, including chiral
symmetry. However, the numerical analysis of Ref. [57]
focused on N ¼ 2, where (a) λm is equivalent to λj, and
(b) the model is deconfined simply due to the anomalies of
the invertible symmetries. The continuum-limit behavior of
N > 2 QCD[Adj] defined on spacetime (or for that matter
spatial) lattices is not yet fully clear.
As discussed above, if we set λm ¼ λj ¼ 0 in the

classical Lagrangian of the continuum theory, then these
couplings stay zero in the quantum theory by dimensional
analysis. But it is less clear what would happen to λj and λm
if we start with a lattice discretization. The lattice brings in
another dimensionful parameter, the lattice spacing a, and
necessarily breaks some spacetime symmetries, such as
translation symmetry. It also often breaks or modifies some
internal symmetries, such as chiral symmetry [34]. Can
four-fermion interaction terms that cannot be generated in a
continuum field theory be radiatively generated when such
a theory is discretized?
A naive massless lattice fermion action leads to 2d

massless “doubler” fermions in the continuum limit; see,
e.g., [34,58,59]. There are several known ways around this,
but all of them do something subtle to chiral symmetry. For
example, let us consider Wilson lattice fermions [58]. The
idea of Wilson fermions is to add a (dangerously) irrelevant
term to the fermion action which explicitly breaks chiral
symmetry and also breaks the degeneracy between the
fermion doubler modes, so that the continuum action
resulting from coarse graining the lattice action becomes
(in a continuum notation)

SW ¼
Z

ddx
!
1

2g2
trf2μν þ trψ̄=Dψ

þmtrψ̄ψ þ ratrψ̄=D2ψ þ # # #
"
; ð19Þ

where the r term is the Wilson term, a is the lattice spacing,
and # # # stands for other terms induced by coarse graining
the lattice action. For generic values of m, one gets 2d

heavy fermions with mass m ∼ 1=a in the continuum limit.
However, it is known that one can tune the bare quark mass
m to get a single light or massless physical quark in the
continuum limit, while the extra 2d − 1 doubler quarks
remain heavy, with masses ∼1=a.
It is easy to verify that the extra terms hiding in # # #

include four-fermion interactions. In particular, it is easy to
check that the tree-level gluon exchange diagram in, e.g.,
Fig. 4 produces an effective λj ∼ r2g2a2 interaction. This
should not be surprising, because no symmetry forbids
such an interaction, and the extra dimensionful scale a
invalidates the naive continuum argument for the impos-
sibility of gluon loops producing classically marginal local
four-fermion interactions. It is natural to expect that higher-
order diagrams induced by the Wilson term also produce
the λm coupling, since λm is also not forbidden by either
symmetries or dimensional analysis arguments. While
these effective four-fermion couplings λj and λm will
necessarily appear suppressed by positive powers of ga,
and, hence, appear to be small near the continuum limit
where ga ≪ 1, these couplings run and can become large at
long distances. Tuning m to reach the chiral limit clearly
does not generically tune four-fermion couplings to zero.
Therefore, if one were to formulate 2D QCD[Adj] on the
lattice using Wilson fermions, one would study the physics
of Eq. (2) with nonzero four-fermion couplings λj and λm.
To avoid this, one would have to turn on λj and λm in the
bare lattice action and fine-tune them.
To show that Wilson fermions are not special in inducing

four-fermion interactions in lattice field theories—even
though it appears to be impossible to induce such interactions
when naively thinking about the continuum theory—let us
consider an even simpler example: a massless Euclidean 2D
Dirac fermion Ψ with a current-current Thirring interaction
term,

SΨ ¼
Z

d2x½Ψ̄=∂Ψþ gtðΨ̄γμΨÞ2': ð20Þ

This simple field theory has the standard vector and axial
symmetries Uð1ÞV andUð1ÞA, and theThirring coupling gt is

FIG. 4. A tree-level gluon-exchange diagram from the Wilson
term in Eq. (19), which leads to an effective λj ∼ r2g2a2.

ALEKSEY CHERMAN and MARIA NEUZIL PHYS. REV. D 109, 105014 (2024)

105014-6

A. Cherman et al., 
SciPost Phys. 8 (2020) 5, 072.

Wilson term

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.105014
https://scipost.org/SciPostPhys.8.5.072
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ALEKSEY CHERMAN and MARIA NEUZIL PHYS. REV. D 109, 105014 (2024)

105014-6

A. Cherman et al., 
SciPost Phys. 8 (2020) 5, 072.

Wilson term

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.105014
https://scipost.org/SciPostPhys.8.5.072
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Conclusion
• We have presented an ongoing computation of the low-lying spectrum of  

using Lattice Gauge Theory. 
‣ Extrapolation to the continuum limit is still required.  

• We are currently in the process of scaling up the calculation. 
‣ Generating additional ensembles with larger numbers of lattice sites and 

numbers of colors. 
‣ Generating additional configurations on each ensemble used in this work. 

• Further investigation of the four-fermion operators  and  are required: how 
does  scale as ?

QCD2

𝒪1 𝒪2

⟨𝒪i⟩ a → 0
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Finite-Volume Dispersion
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