Low-Lying Spectrum of Two-Dimensional Adjoint QCD from the Lattice

William Jay, Manki Kim, <u>Patrick Oare</u>, Phiala Shanahan, Neill Warrington July 30th, 2024

Lattice 2024, University of Liverpool

Confinement in Gauge Theories

- A linear static quark potential V(r)characterizes the confining phase of a gauge theory.
- With this definition, pure SU(N) gauge theory is confining.

Patrick Oare, MIT

V(r)

Confinement in Gauge Theories

- A linear static quark potential V(r) characterizes the confining phase of a gauge theory.
- With this definition, pure SU(N) gauge theory is confining.
- QCD undergoes string breaking at large r.
 - Energetically favorable for sea quarks to bind to test charges and create a pair of mesons.

Confinement in Gauge Theories

- A linear static quark potential V(r)characterizes the confining phase of a gauge theory.
- With this definition, pure SU(N) gauge theory is confining.
- QCD undergoes string breaking at large r.
 - Energetically favorable for sea quarks to bind to test charges and create a pair of mesons.
- gauge theory confines; what about theories with adjoint matter?

Patrick Oare, MIT

• How do adjoint fields influence the confining nature of a theory? Pure SU(N)

Two-Dimensional Adjoint QCD (QCD₂)

not have propagating local degrees of freedom.

Patrick Oare, MIT

• In d = 2 spacetime dimensions, pure SU(N) gauge theory is solvable and does A. Migdal. Sov.Phys.JETP 42 (1975) 413.

Two-Dimensional Adjoint QCD (QCD₂)

- not have propagating local degrees of freedom.
- The simplest two-dimensional theory with dynamical adjoint degrees of freedom is **two-dimensional adjoint QCD** (QCD_2).
 - Theory of a Majorana fermion coupled to an SU(N) gauge field in the adjoint representation with Minkowski action:

$$S_{\text{QCD}_2}[\psi, G] = \int d^2x \operatorname{Tr} \left[\frac{1}{2g^2} G_{\mu\nu}(x) G^{\mu\nu}(x) + \overline{\psi}(x) (i\gamma^{\mu} D_{\mu} - m) \psi(x) \right]$$

Patrick Oare, MIT

• In d = 2 spacetime dimensions, pure SU(N) gauge theory is solvable and does A. Migdal ov.Phys.JETP 42 (1975) 413

Majorana fermion field $\psi(x) = \psi^a(x)t^a$

Two-Dimensional Adjoint QCD (QCD₂)

- not have propagating local degrees of freedom.
- The simplest two-dimensional theory with dynamical adjoint degrees of freedom is **two-dimensional adjoint QCD** (QCD_2).
 - ► Theory of a Majorana fermion coupled to an SU(N) gauge field in the adjoint representation with Minkowski action:

$$S_{\text{QCD}_2}[\psi, G] = \int d^2 x \operatorname{Tr} \left[\frac{1}{2g^2} G_{\mu\nu}(x) G^{\mu\nu}(x) + \overline{\psi}(x) (i\gamma^{\mu} D_{\mu} - m) \psi(x) \right]$$

Toy model for confinement: confining for m > 0, deconfining for m = 0. Patrick Oare, MIT

• In d = 2 spacetime dimensions, pure SU(N) gauge theory is solvable and does A. Migdal,

Majorana fermion field $\psi(x) = \psi^a(x)t^a$

Sov.Phys.JETP 42 (1975) 413.

Z. Komargodski et. al. Symmetries and strings of adjoint QCD. JHEP 03 (2021) 103.

J. Donahue, et. al. Confining Strings, Infinite Statistics and Integrability. Phys. Rev. D **101** (2020) 8, 081901.

R. Dempsey et. al. Adjoint Majorana QCD_2 at Finite N. JHEP 04 (2023) 107.

(Computation of the spectrum with DLCQ at N = 2, 3, 4).

QCD_2 on the lattice

• First study of QCD₂ with LGT was published this year.

- Computed Polyakov loop $\langle P \rangle$, static quark potential, chiral condensate, and string tension for a number of (N, g, m).
- Used two discretizations: Wilson and reweighted overlap.

Patrick Oare, MIT

G. Bergner, S. Piemonte, M. Ünsal JHEP 07 (2024) 048.

QCD_{2} on the lattice

• First study of QCD₂ with LGT was published this year.

• Computed Polyakov loop $\langle P \rangle$, static quark potential, chiral condensate, and string tension for a number of (N, g, m).

Used two discretizations: Wilson and reweighted overlap.

• Our calculation uses a Wilson discretization on a Euclidean $L \times T$ lattice, and the Wilson action for the gauge field $U_{\mu}(x)$.

Dirac operator:

$$D_{W}(x, y) = 1 \,\delta_{x, y} - \kappa \sum_{\mu=1}^{-1} \left[V_{\mu}(x) - \kappa \sum_{\mu=1}^{-1} V_{\mu}(x) \right]$$

2

Hopping parameter $\kappa = \frac{1}{2m+4}$

Patrick Oare, MIT

G. Bergner, S. Piemonte, M. Ünsal JHEP 07 (2024) 048.

adjoint links $V^{ab}_{\mu}(x) \equiv 2 \operatorname{Tr}[U^{\dagger}_{\mu}(x)t^{a}U_{\mu}(x)t^{b}]$ $f(x)(1-\gamma_{\mu})\delta_{x+\hat{\mu},y} + V^{T}_{\mu}(y)(1+\gamma_{\mu})\delta_{x-\hat{\mu},y}$

I. Montvay. Majorana fermions on the lattice. hep-lat/0108011 (2001).

LGT Setup (N = 2 colors)

×

<u> </u>	T	ß	K,	Nafaa
10	10	2 1 9 5	$\frac{128880}{128880}$	- Cigs
10	10		0.10003	90
12	12	4.5	0.15	90
14	14	6.125	0.159091	90
16	16	8.0	0.166667	90
18	18	10.125	0.173077	90
20	20	12.5	0.178571	90
22	22	15.125	0.183333	90
24	24	18.0	0.1875	76
26	26	21.125	0.191176	58
28	28	24.5	0.194444	45

Majorana Fermions on the Lattice

 $\langle \mathcal{O}_{1} \dots \mathcal{O}_{k} \rangle = \frac{1}{Z} \int DU D\psi D\overline{\psi} e^{-S_{g}[U] - \frac{1}{2} \int \overline{\psi} D_{W} \psi} \mathcal{O}_{1} \dots \mathcal{O}_{k}$ $= \frac{1}{Z} \int DU e^{-S_{g}[U]} \operatorname{pf} D_{W} \langle \mathcal{O}_{1} \dots \mathcal{O}_{k} \rangle_{F}$ $(\operatorname{pf} D_{W})^{2} = \det D_{W}$

Majorana Fermions on the Lattice $\langle \mathcal{O}_1 \dots \mathcal{O}_k \rangle = \frac{1}{Z} \int DU D\psi D\overline{\psi} e^{-S_g[U] - \frac{1}{2}\int \overline{\psi} D_W \psi} \mathcal{O}_1 \dots \mathcal{O}_k$ $= \frac{1}{Z} \int DU e^{-S_g[U]} \operatorname{pf} D_W \langle \mathcal{O}_1 \dots \mathcal{O}_k \rangle_F$ $(\operatorname{pf} D_W)^2 = \det D_W$

- The Pfaffian $pf D_W$ is not necessarily *positive*: how to interpret as a probability density for sampling?
 - 1. Check or prove that $pf D_W > 0$.
 - 2. Reweight the probability measure.

Majorana Fermions on the Lattice $\langle \mathcal{O}_1 \dots \mathcal{O}_k \rangle = \frac{1}{Z} \int DU D\psi D\overline{\psi} e^{-S_g[U] - \frac{1}{2}\int \overline{\psi} D_W \psi} \mathcal{O}_1 \dots \mathcal{O}_k$ $= \frac{1}{Z} \int DU e^{-S_g[U]} \operatorname{pf} D_W \langle \mathcal{O}_1 \dots \mathcal{O}_k \rangle_F$ $(\operatorname{pf} D_W)^2 = \det D_W$

- The Pfaffian $pf D_W$ is not necessarily *positive*: how to interpret as a probability density for sampling?
 - 1. Check or prove that $pf D_W > 0$.
 - 2. Reweight the probability measure.

Static Quark Potential

W(r, t) to the functional form,

 $W(r,t) = Ce^{-V(r)t}$

• The static quark potential V(r) is extracted by fitting the $r \times t$ Wilson loop

Static Quark Potential

- W(r, t) to the functional form,
- V(r) is fit to the linear ansatz $V(r) = A + \sigma r$ to extract the string tension σ .

• The static quark potential V(r) is extracted by fitting the $r \times t$ Wilson loop

$$W(r,t) = Ce^{-V(r)t}$$

Spectroscopy

- We compute propagators by direct inversion.

Patrick Oare, MIT

• Wick's theorem can be used to compute correlators of Majorana fermions.

Spectroscopy

- Wick's theorem can be used to compute correlators of Majorana fermions. • We compute propagators by direct inversion.
- Excite mesonic states with 1-momentum p with the Dirac bilinear $\chi_{\Gamma}(t;p)$ for $\Gamma \in \{1, \gamma_5, \gamma^0, \gamma^1\}:$
 - In d = 2, $\{1, \gamma^1\}$ are

re parity even, and
$$\{\gamma_5, \gamma^0\}$$
 are parity odd.

$$\chi_{\Gamma}(t;p) = \frac{1}{\sqrt{L}} \sum_{x} e^{-ipx} \overline{\psi}(x,t) \Gamma \psi(x,t)$$

Patrick Oare, MIT

 \boldsymbol{J}

Spectroscopy

- Wick's theorem can be used to compute correlators of Majorana fermions. • We compute propagators by direct inversion.
- Excite mesonic states with 1-momentum p with the Dirac bilinear $\chi_{\Gamma}(t;p)$ for $\Gamma \in \{1, \gamma_5, \gamma^0, \gamma^1\}:$
 - In d = 2, $\{1, \gamma^1\}$ are

The parity even, and
$$\{\gamma_5, \gamma^0\}$$
 are parity odd
 $\chi_{\Gamma}(t;p) = \frac{1}{\sqrt{L}} \sum_x e^{-ipx} \overline{\psi}(x,t) \Gamma \psi(x,t)$

• Compute two-point correlators at fixed momentum p to extract the ground state in each sector.

$$C_2^{\Gamma}(t;p) = \frac{1}{T} \sum_{s} \langle \chi_{\Gamma}(t+s;p) \overline{\chi}_{\Gamma}(s;p) \rangle.$$

 $\Gamma = \gamma^0$

Pseudoscalar Bilinears

Effective Mass, Pseudoscalar Sector

Patrick Oare, MIT

Effective Mass, Pseudoscalar Sector

Patrick Oare, MIT

Effective Mass, Pseudoscalar Sector

Low-Lying Spectrum and the GEVP

• Compute the low-lying spectrum with the operator basis,

$$B_{\Gamma}^{p}(t) = \sum_{x} \overline{\psi}(x) W_{\text{Adj}}(x, x + p\hat{0}) \Gamma \psi(x + p\hat{0})$$

projected onto lattice irreps to yield operator basis $\mathcal{B}_p^{\Gamma}(t)$.

Patrick Oare, MIT

11

Low-Lying Spectrum and the GEVP

• Compute the low-lying spectrum with the operator basis,

$$B_{\Gamma}^{p}(t) = \sum_{x} \overline{\psi}(x) W_{\text{Adj}}(x, x + p\hat{0}) \Gamma \psi(x + p\hat{0})$$

- projected onto lattice irreps to yield operator basis $\mathcal{B}_p^{\Gamma}(t)$.
- Construct the correlator matrix,

$$C_{pq}^{\Gamma}(t) = \frac{1}{T} \sum_{s} \langle \mathcal{B}_{p}^{\Gamma}(t+s) (\mathcal{B}_{q}^{\Lambda,\Gamma})^{\dagger}(s) \rangle$$

and solve the Generalized Eigenvalue Problem (GEVP) to evaluate variational bounds $E_n^{(\text{eff})}$ on the low-lying spectrum, $\swarrow \lambda^{(k)}(t, t_0) \sim e^{-E_k(t-t_0)}$ $C(t)\vec{v}^{(k)}(t,t_0) = \lambda^{(k)}(t,t_0)C(t_0)\vec{v}^{(k)}(t,t_0)$

Patrick Oare, MIT

11

Low-Lying Spectrum and the GEVP $\Gamma = \gamma_5, t_0 = 0$, maximum shift 3. 4.03.5 - $-\log \frac{\lambda(t+1)}{\ldots}$ 3.0- $\lambda(t)$ $\stackrel{ m fill}{=} 2.5$ -2.0 -1.5 -

6

4

Patrick Oare, MIT

1.0

2

Low-Lying Spectrum and the GEVP $\Gamma = \gamma_5, t_0 = 0$, maximum shift 3. 4.03.5 - $-\log \frac{\lambda(t+1)}{2}$ 3.0- $\lambda(t)$ $\stackrel{\mathrm{fl}}{=} 2.5$ -2.0 -1.5-1.0 10 8 14 122 6

Patrick Oare, MIT

Low-Lying Spectrum and the GEVP $\Gamma = \gamma_5, t_0 = 0$, maximum shift 3. 4.03.5- $-\log \frac{\lambda(t+1)}{r}$ 3.0- $\lambda(t)$ $E^{ m eff}$ 2.52.0 -1.5-1.0 10 8 14 16 6 122 Patrick Oare, MIT

Four-Fermion Operators

symmetries ($\mathcal{O}_1 = \mathcal{O}_2$ for N = 2 colors):

Patrick Oare, MIT

• Two additional operators may be added to the QCD_2 action consistent with its

 $\mathcal{O}_1 = (\operatorname{Tr} \overline{\psi} \psi)^2 \qquad \qquad \mathcal{O}_2 = \operatorname{Tr} (\overline{\psi} \gamma^{\mu} \psi \overline{\psi} \gamma_{\mu} \psi)$

A. Cherman *et al.*, <u>SciPost Phys. 8 (2020) 5, 072</u>.

Four-Fermion Operators

- Two additional operators may be added to the QCD_2 action consistent with its symmetries ($\mathcal{O}_1 = \mathcal{O}_2$ for N = 2 colors): A. Cherman *et al.*, SciPost Phys. 8 (2020) 5, 072. $\mathcal{O}_1 = (\operatorname{Tr} \overline{\psi} \psi)^2 \qquad \qquad \mathcal{O}_2 = \operatorname{Tr} (\overline{\psi} \gamma^{\mu} \psi \overline{\psi} \gamma_{\mu} \psi)$
- Certain discretizations of QCD₂ action may radiatively generate these operators.
 - Non-zero $\langle \mathcal{O}_1 \rangle$ indicates that a coupling for \mathcal{O}_1 is generated at finite a.

A. Cherman, M. Neuzil. Phys. Rev. D 109 (2024) 10, 105014. arWilson term

Four-Fermion Operators

- symmetries ($\mathcal{O}_1 = \mathcal{O}_2$ for N = 2 colors): $\mathcal{O}_1 = (\mathrm{Tr}\,\overline{\psi}\psi)^2$
- Certain discretizations of QCD₂ action may radiatively generate these operators.
 - Non-zero $\langle \mathcal{O}_1 \rangle$ indicates that a coupling for \mathcal{O}_1 is generated at finite a.

A. Cherman, M. Neuzil. Phys. Rev. D 109 (2024) 10, 105014. arWilson term

Patrick Oare, MIT

• Two additional operators may be added to the QCD₂ action consistent with its

 $\mathcal{O}_2 = \operatorname{Tr}\left(\overline{\psi}\gamma^{\mu}\psi\overline{\psi}\gamma_{\mu}\psi\right)$

A. Cherman et al., <u>SciPost Phys. 8 (2020) 5, 072</u>.

Conclusion

- We have presented an ongoing compusing Lattice Gauge Theory.
 - Extrapolation to the continuum limit is still required.
- We are currently in the process of scaling up the calculation.
 - Generating additional ensembles with larger numbers of lattice sites and numbers of colors.
- Generating additional configurations on each ensemble used in this work. • Further investigation of the four-fermion operators \mathcal{O}_1 and \mathcal{O}_2 are required: how
- Further investigation of the four-ferm does $\langle \mathcal{O}_i \rangle$ scale as $a \to 0$?

Patrick Oare, MIT

• We have presented an ongoing computation of the low-lying spectrum of QCD_2

Backup Slides

Finite-Volume Dispersion

