

OVERCOMING ERGODICITY PROBLEMS OF THE HMC USING RADIAL UPDATES

JULY 30TH 2024 I FINN TEMMEN I FORSCHUNGSZENTRUM JÜLICH

OVERCOMING ERGODICITY PROBLEMS OF THE HMC USING RADIAL UPDATES

JULY 30TH 2024 I FINN TEMMEN I FORSCHUNGSZENTRUM JÜLICH

IN COLLABORATION WITH

Ergodicity and convergence of HMC

Ergodicity violations due to potential barriers

Ergodicity and convergence of HMC

Ergodicity violations due to potential barriers

- In-principle: infinite potential, e.g. vanishing fermion determinant
- In-practice: regions separated by exponentially large potential

[Wynen et al., arXiv:1812.09268]

Ergodicity and convergence of HMC

Ergodicity violations due to potential barriers

- In-principle: infinite potential, e.g. vanishing fermion determinant
- In-practice: regions separated by exponentially large potential

[Wynen et al., arXiv:1812.09268]

Convergence of HMC

• Proof for geometrical convergence of HMC on non-compact manifolds

[Kennedy, Yu, to be published]

Ergodicity and convergence of HMC

Ergodicity violations due to potential barriers

- In-principle: infinite potential, e.g. vanishing fermion determinant
- In-practice: regions separated by exponentially large potential

[Wynen et al., arXiv:1812.09268]

Convergence of HMC

• Proof for geometrical convergence of HMC on non-compact manifolds

[Kennedy, Yu, to be published]

Radial updates: Augment HMC with Metropolis-Hastings update in radial direction

Ergodicity and convergence of HMC

Ergodicity violations due to potential barriers

- In-principle: infinite potential, e.g. vanishing fermion determinant
- In-practice: regions separated by exponentially large potential

[Wynen et al., arXiv:1812.09268]

Convergence of HMC

Proof for geometrical convergence of HMC on \bullet non-compact manifolds

[Kennedy, Yu, to be published]

Radial updates: Augment HMC with Metropolis-Hastings update in radial direction

Ergodicity and convergence of HMC

Talk by Dominic Schuh at 4:15 PM ''Simulating the Hubbard Model with Normalizing Flows''

Ergodicity violations due to potential barriers

- In-principle: infinite potential, e.g. vanishing fermion determinant
- In-practice: regions separated by exponentially large potential

[Wynen et al., arXiv:1812.09268]

Convergence of HMC

Proof for geometrical convergence of HMC on \bullet non-compact manifolds

[Kennedy, Yu, to be published]

Radial updates: Augment HMC with Metropolis-Hastings update in radial direction

Setting the stage

• Hubbard Hamiltonian in particle/hole basis

$$
H = -\kappa \sum_{\langle x, y \rangle} \left(a_x^{\dagger} a_y - b_x^{\dagger} b_y \right) + \frac{U}{2} \sum_x \left(a_x^{\dagger} a_x - b_x^{\dagger} b_x \right)^2
$$

Setting the stage

• Hubbard Hamiltonian in particle/hole basis

$$
H = -\kappa \sum_{(x,y)} \left(a_x^{\dagger} a_y - b_x^{\dagger} b_y \right) + \frac{U}{2} \sum_x \left(a_x^{\dagger} a_x - b_x^{\dagger} b_x \right)^2
$$

Exponential discretization
Hubbard-Stratonovich introduces non-compact auxiliary fields ϕ_{xt}

$$
S[\phi] = \frac{N_t}{2U\beta} \sum_{x,t} \phi_{xt}^2 - \log \det M[i\phi] - \log \det M[-i\phi]
$$

Setting the stage

$$
S[\phi] = \frac{N_t}{2U\beta} \sum_{x,t} \phi_{xt}^2 - \log \det M[i\phi] - \log \det M[-i\phi]
$$

Fermionic contribution

• Fermion matrix:

Ulybyshev et al., arXiv:1712.02188

- Manifolds of vanishing det $M[i\phi]$ with codimension 1
- Separated regions constitute problem for perfect Molecular Dynamics

Setting the stage

$$
S[\phi] = \frac{N_t}{2UB} \sum_{\substack{x,t \\ \dots = R^2}} \phi_{xt}^2 - \log \det M[i\phi] - \log \det M[-i\phi]
$$

• Fermion matrix:

Ulybyshev et al., arXiv:1712.02188

- Manifolds of vanishing det $M[i\phi]$ with codimension 1
- Separated regions constitute problem for perfect Molecular Dynamics

• Define radius
$$
R = \sqrt{\sum_{x,t} \phi_{xt}^2}
$$

Initial configuration $\phi = \overline{(\phi_1, \phi_2, ..., \phi_d)}$

• e.g. output of HMC

Resolving ergodicity violations

$$
N_x = 2, N_t = 1, U = 18, \beta = \kappa = 1
$$

Resolving ergodicity violations

 $N_x = 2, N_t = 1, U = 18, \beta = \kappa = 1$

Member of the Helmholtz Association

Resolving ergodicity violations

 $N_x = 2$, $N_t = 1$, $U = 18$, $\beta = \kappa = 1$

Member of the Helmholtz Association

Resolving ergodicity violations

Resolving ergodicity violations

$$
\Phi_x = \sum \phi_{xt} \qquad \qquad N_x = 2, N_t = 8, U = 18, \beta = \kappa = 1
$$

Resolving ergodicity violations

$$
\Phi_x = \sum \phi_{xt} \qquad \qquad N_x = 2, N_t = 8, U = 18, \beta = \kappa = 1
$$

Autocorrelations, Scaling and Parameter Tuning

• Compute $\tau_{\mathcal{O},int}$ as a function of σ for increasing N_t

Autocorrelations, Scaling and Parameter Tuning

- Compute $\tau_{\text{o,int}}$ as a function of σ for increasing N_t
- Consider two observables:
	- $\mathcal{O}_0 = \sqrt{\sum_x \Phi_x^2}$
	- $\mathcal{O}_1 = \sum_{x,t} \phi_{x,t}$ (charge)

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2; N_t = 1$

Member of the Helmholtz Association

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 1$

• Random walk and diffusive regime for small σ , i.e. τ_{int} ∝ σ^{-2}

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 1$

- Random walk and diffusive regime for small σ , i.e. τ_{int} ∝ σ^{-2}
- Linear regime for large σ , i.e. $\tau_{int} \propto \sigma$
- Fit function $\tau_{\text{int}}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 1$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

Member of the Helmholtz Association

Forschungszentrum

Autocorrelations, Scaling and Parameter Tuning

• $\tau_{\text{int}}(\sigma_{\text{min}})$ scales almost linearly with d

Autocorrelations, Scaling and Parameter Tuning

• $\tau_{\text{int}}(\sigma_{\text{min}})$ scales almost linearly with d • At σ_{\min} radial acceptance rate ~30%

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

• Capability to jump over large or even infinite potential barriers

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

• Can be used to tune additional parameter σ

Member of the Helmholtz Association

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

- Can be used to tune additional parameter σ
- $\sigma_{\rm min} \propto d^{-0.5}$ at leading order

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

- Can be used to tune additional parameter σ
- $\sigma_{\rm min} \propto d^{-0.5}$ at leading order
- τ_{int} scales almost linearly when employing radial updates

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

- Can be used to tune additional parameter σ
- $\sigma_{\rm min} \propto d^{-0.5}$ at leading order
- τ_{int} scales almost linearly when employing radial updates
- Optimal radial acceptance rate \sim 30%

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

Outlook: Scaling to larger systems and realistic simulation

• Increase N_x and add more spatial dimensions

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

Outlook: Scaling to larger systems and realistic simulation

• Increase N_x and add more spatial dimensions

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

Outlook: Scaling to larger systems and realistic simulation

• Increase N_x and add more spatial dimensions

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

Outlook: Scaling to larger systems and realistic simulation

• Increase N_x and add more spatial dimensions

Rodekamp et al., arXiv:2406.06711v1

• Perform realistic simulation with tuned acceptance rate, e.g. Perylene

Take home message and future avenues

Radial updates successfully restore ergodicity in the Hubbard model

Radial updates reduce autocorrelations at low computational cost

Outlook: Scaling to larger systems and realistic simulation

Bonus: Geometric convergence of HMC

• Talk by Xinhao Yu on Friday, August 2^{nd} 2:55 PM

''On the geometric convergence of HMC on Riemannian manifolds.''

THANK YOU!

Member of the Helmholtz Association

BACKUP SLIDES

Member of the Helmholtz Association

Ergodicity for very small σ

- Strong ergodicity problem for $\sigma = 0$
- Reduced ergodicity problem for $\sigma \approx 0$ but slow exploration

Tunneling of HMC

- In practice: energy violations due to imperfect MD
- HMC can tunnel through potential barriers
- Also happens at \sim 99% acceptance rate for long trajectories

Forschungszentrum

 $\Phi_x = \sum \phi_{x,t}$ for $N_x = 2$, $N_t = 16$

The Algorithm - Pseudocode

function RADIAL_UPDATE(ϕ , σ)

```
\gamma = \text{SAMPLE\_NORMAL}(mean = 0, standard_deviation = \sigma^2)
```
 $\tilde{\phi} = e^{\gamma} \phi$

$$
\alpha = \exp\{-(S(\tilde{\phi}) - S(\phi)) + d\gamma\}
$$

$$
u = SAMPLE_UNIFORM(long = 0, high = 1)
$$

if $u \leq \alpha$ then

return $\tilde{\phi}$

else

return ϕ

The Algorithm - Pseudocode

for $i = 0$ to N_{cfgs} do

 $\phi =$ HMC(ϕ)

- if i % radial_frequency $== 0$ then
	- for $j = 0$ to N_{Radial} do $\phi =$ RADIAL_UPDATE(ϕ , σ)

RESULTS 2-SITE MODEL

Member of the Helmholtz Association

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 1$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 4$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

Slide 9

Forschungszentrum

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 8$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 16$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

• Fit function $\tau_{\text{int}}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 2$; $N_t = 32$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

PRELIMINARY RESULTS 4-SITE MODEL

Member of the Helmholtz Association

Autocorrelations, Scaling and Parameter Tuning

Slide 9

Forschungszentrum

Autocorrelations, Scaling and Parameter Tuning

CH Forschungszentrum

Autocorrelations, Scaling and Parameter Tuning

July 30th 2024

Slide 9

Forschungszentrum

Autocorrelations, Scaling and Parameter Tuning

 $\tau_{\text{int}}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

 $N_x = 4$; $N_t = 32$; Fit $\tau_{int}(\sigma) = a\sigma^{-2} + b + c\sigma$

• Fit function $\tau_{\text{int}}(\sigma) = a\sigma^{-2} + b + c\sigma$

Autocorrelations, Scaling and Parameter Tuning

• From theoretical considerations $\sigma_{\min}(d) \propto d^{-0.5} + \mathcal{O}(d^{-1})$ • Fit function

$$
\sigma_{\min}(d) = \alpha d^{\beta}
$$

Autocorrelations, Scaling and Parameter Tuning

• $\tau_{\text{int}}(\sigma_{\text{min}})$ scales almost linearly with d