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1. Introduction to Sign-problem of real-time physics and Complex Langevin 
2. Kernels in the CLE – How to get rid of boundary terms 
3. realtime scalars in 0+1 and 1+1 dimensions

  

Dénes  Sexty

        Real time simulations of scalar fields with 
kernelled complex Langevin equation



How does the Glasma equilibrate?
   Non-equilibrium Quantum Field theory

For hydrodynamics one needs equilibrium values of:    
                      Equation of State  
      Transport coefficients: e.g. viscosity

“easy” to calculate 

Hard problem
Real-time correlator

|Ψ(t=0)⟩  →  |Ψ(t )⟩

η= 1
T V ∫0

∞
dt ⟨σ xy(0)σ xy(t )⟩

Why is real-time QFT so hard?
                        Sign Problem

Heavy-Ion collisions



Path integral formulation of Quantum Mechanics

 Quantum Mechanics with Ĥ= p̂2

2m
+V (q̂)

Transition amplitude:

Path integral:                        normalized sum for all functions
                                                          with correct bound. cond. 

∫q1

q2

Dq= q(t 1⩽t⩽t 2)
q (t1)=q1 q (t 2)=q2

i ∂t Ψ( x , t)=Ĥ Ψ(x ,t )Time evolution given by 
Schrödinger eq.

⟨q2|e
−i t Ĥ|q1⟩=∫q1

q2

Dqei S [q (t )]

Equivalent formulation

Numerically advantegous

q (t )  instead of  Ψ(x ,t )

⟨q1|e
−β Ĥ|q2⟩=∫q1

q2

Dqe−SE [q(t )] SE [q (t )]=∫t=0

t=β
dt ( 1

2
m q̇ (t )2+V (q (t)))

|Ψ(x , t )⟩=e−i t Ĥ|Ψ(x ,0)⟩

Imaginary time: t→−i τ     0<τ<−iβ e−i t Ĥ  →  e−β Ĥ
Thermodynamics



Stochastic process for  x:

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T∫

0

T

O(x (τ))d τ=
∫e−S (x )O(x)dx

∫e−S (x)dx

Langevin Equation (aka. stochatic quantisation)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')
d x
d

=−∂S
∂ x

 

Random walk in configuration space

Numerically,
  results are extrapolated to Δ τ→0



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Analytically continued observables are calculated along the trajectories:

⟨O ⟩=limT→∞
1
T∫

0

T

O(x (τ)+iy (τ))d τ

Complex Langevin Equation

⟨η(τ)⟩=0
Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U + ≠ U−1

d x
d

=−
∂S
∂ x

 

1
Z∫ P comp( x )O ( x )dx= 1

Z∫ P real( x , y )O ( x+iy)dx dy    ?

〈 x2〉real  →  〈 x2− y2〉complexified



S [x ]=σ x2+i λ x

Gaussian Example

σ=1+i λ=20

d
d τ

(x+i y )=−2σ(x+iy)−iλ+η

CLE

P (x , y )=e−a(x−x0)
2−b( y− y0)

2−c (x−x0)( y− y0)

Gaussian distribution 
around critical point

∂ S (z)
∂ z ]

z0

=0

Measure 
on real axis



For nontrivial models CLE may or may not give a correct answer

Diagnostic observables: boundary terms 
                                       certain non-holomorphic observables, histograms 

S (φ)=iβcos φ+iφ

Do we know if it’s correct?

What can we do if it’s incorrect?
Change variables
Use a kernel (see below)
Use a “regularization”  

[See talk of Michael Mandl]
Reasons for incorrect results:  slowly decaying distributions (Boundary terms)
                                                different cycles contributing
                                                non-holomorphic actions

[See talk of Michael Hansen]



Quantum oscillator

Path integral

Schwinger-Keldysh contour

∫D ϕ eiS

Suppose we are interested in ⟨e−β Ĥ ϕ̂ (t ) ϕ̂ (0)⟩=Tr (e−β Ĥ ei t Ĥ ϕ̂ e−i t Ĥ ϕ̂)

This is time ordered if we take a complex time contour

S=∫dt 1
2 ( d ϕ
dt )

2

−1
2
m2 ϕ2−λ

4
ϕ4

e−β Ĥ ei t Ĥ=e∫t

−i β
dt Ĥ

We can shift the contour 
 into the complex plane



Discretisation

S=∑ Δ t n ( 12 ( ϕn+1 ¿
−ϕn

Δ t n )
2

−1
2
m2ϕn

2−λ
4

ϕn
4 )given tn  on a complex time-plane

Δ tn=t n+1−t n

Thermal average

Non-equilibrium time evolution

Tr (ρ ei t Ĥ ϕ̂ e−i t Ĥ ϕ̂ )

Path starts at
Path ends at 
Periodical boundary conditions

t=0
t=−iβ

Tr (e−β Ĥ ei t Ĥ ϕ̂ e−i t Ĥ ϕ̂ )

Using some initial density matrix ρ

at t=0:  two separate integrals for ϕi  and ϕ f

Fields no longer periodic

Especially easy in CLE with gaussian initial density matrix

[Berges, Borsányi, Sexty, Stamatescu (2006)]



Real-time two point function of quantum oscillator

=1

Asymmetric
contour:

0.01

0.99

Im t

Re t

Thermal equilibrium: 
     periodic boundary cond.              Imaginary extent gives = 1

Tshort real-time extent

large real-time extent
Boundary terms appear

[Berges, Borsanyi, Sexty, Stamatescu (2006)]



Kernels in the Langevin equation

ż=−∂ S
∂ z

+η → ż=−K (z) ∂ S
∂ z

+
∂K (z)

∂ z
+√K (z)η

Introducing a Kernel

Many variables  –  matrix Kernel d ϕi
d τ

=−H ij(ϕ)H jk
T (ϕ) ∂ S

∂ ϕk
+∂k (H ij(ϕ)H jk

T (ϕ))+H ij(ϕ)η j

Can one use a Kernel to decrease boundary terms in the CLE?

Yes! search for a kernel using stochastic gradient descent
    Loss function:  Size of the distribution in imaginary directions 

[Rothkopf, Larsen, Alvestad(2023); Lampl, Sexty (2024)]

[Soderberg (1987), Okamoto et. al. (1988)]

Fokker-Planck equation:For real action, 
         equilibrium distribution unchanged.

For complex action 
         Complexified distribution might change,  
         boundary terms may or may not appear/disappear     
         results are still a linear combination of integration cycles for zero boundary

∂τP=∂x K (x)(∂x+S ')P

[see also: Michael Mandl’s talk]

Kernel = field dependent diffusion const.



ϕi '=−H ijH jk
T ∂ S

∂ϕk
Δ τ+H ij ηj√2Δ τ ¿

Gradient descent

∂∑ (Im ϕi ')
2

∂H ij
=∂H ij

Loss1. collect average for during CL simulation
with current

2. update H H ij  →  H ij−∂H ij
Loss

H



First step: Field independent matrix kernel

real part imaginary part

t=2.0

t=1.2
Real-time extent

[Lampl, Sexty (2024)]



Boundary terms

Boundary terms of ϕ(t)2

Without Kernel:

With optimized kernel:

Actually, for an anharmonic quantum oscillator it’s also easy
to calculate exact results (e.g. diagonalize Hamiltonian)
                  Compare to exact 



Without kernel With learned kernel

t=1.6

t=1.2



Increasing real time extent, boundary terms appear again

Without kernel With learned kernel

t=2.0

t=2.0



Scalar fields in 1+1 dimension

[Alexandru et. al. (2022)]

Dense constant Kernel 
on the Schwinger-Keldysh contour

Thimble result till t=1.6

CLE till t=3.2 (at least)

[Alvestad, Rothkopf, Sexty (2024)]

two point function: ⟨ϕ (0)ϕ(t )⟩

N x=16  N t=32  N τ=4



Summary

Real-time QFT           Severe Sign problem
        
Studying quantum oscillator and scalar field theory
    Discretised on a Schwinger-Keldysh-like temporal contour

Breakdown of CLE at large time-extents due to boundary terms
      kernels change breakdown time  
      optimal kernel through machine learning 

For 1+1d scalars CLE with optimal kernel
       Reaches furthest from ab initio methods at hand



Boundary terms as a volume integral 
[Scherzer, Seiler, Sexty, Stamatescu (2018+2019)]

∂ τFO(Y ,t , τ=0)=BO(Y ,t , τ=0)=

∫−Y

Y
P (x , y ,t )LcO(x+iy)−∫−Y

Y
(LT P)O(x+iy ,0)

Calculating an observable defined on a compact boundary in many dimensions
  can be inconvenient

Observable with a cutoff
easy to do in many dimensions Vanishes as process equilibrates

LcO(x+iy) consistency conditions            Schwinger-Dyson eqs.

Order of limits crucial

limt→∞ limY→∞∫−Y

Y
P (x , y , t )LcO(x+iy)  can be undefined

≈



Measuring boundary terms

∫−Y

Y
P(x , y , t )LcO(x+iy)=∫P (x , y ,t )LcO(x+iy)θ(Y− y )

Lc=∑ ∂i
2+K i∂i

Many variables: define cutoff to extend SU(N) manifold  
                             to compact submanifold of SL(N,C) 

Measure “unitarity norm” and observable

Analyze for any cutoff

e.g.  Im z ;   maxiTr (U i
+ U i−1)2

Trick for second term:

∑ K i∂iO=1
ϵ [O(z (τ+ϵ ,η=0))−O( z(τ ))]

Measure observable after doing a noiseless update step with stepsize ϵ
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