Real time simulations of scalar fields with kernelled complex Langevin equation

> University of Graz Dénes Sexty

Collaborators: Daniel Alvestad, Nina Maria Lampl, Alexander Rothkopf

Lattice 2024, Liverpool, 30.06.2024

1. Introduction to Sign-problem of real-time physics and Complex Langevin

- 2. Kernels in the CLE How to get rid of boundary terms
- 3. realtime scalars in 0+1 and 1+1 dimensions

Heavy-Ion collisions

How does the Glasma equilibrate? Non-equilibrium Quantum Field theory

 $|\Psi(t=0)\rangle \rightarrow |\Psi(t)\rangle$

For hydrodynamics one needs equilibrium values of: Equation of State Transport coefficients: e.g. viscosity "easy" to calculate

Hard problem Real-time correlator

$$
\eta\!=\!\frac{1}{TV}\int_0^\infty dt \langle \sigma_{xy}(0)\sigma_{xy}(t)\rangle
$$

Why is real-time QFT so hard? Sign Problem

Path integral formulation of Quantum Mechanics

Quantum Mechanics with

$$
\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{q})
$$

 $i \partial_t \Psi(x, t) = \hat{H} \Psi(x, t)$ $|\Psi(x, t)| = e^{-it\hat{H}} |\Psi(x, 0)|$ Time evolution given by Schrödinger eq.

Equivalent formulation

Transition amplitude:

$$
\langle q_2|e^{-it\hat{H}}|q_1\rangle = \int_{q_1}^{q_2} D q e^{iS[q(t)]}
$$

 $1 \leq t \leq t_2$) $q(t_1) = q_1 \ q(t_2) = q_2$

 $\int_{q_1}^{q_2}$

Numerically advantegous

q(*t*) instead of $\Psi(x,t)$

Imaginary time: $t \rightarrow -i\tau$ 0 < τ < −*i* β

$$
\langle q_1|e^{-\beta \hat{H}}|q_2\rangle = \int_{q_1}^{q_2} D q e^{-S_E[q(t)]}
$$

 $[S_E[q(t)] = \int_{t=0}^{t=\beta}$ $dt\left|\frac{1}{2}\right|$ 1 2 $\int m \dot{q}(t)^2 + V(q(t))$ $e^{-it\hat{H}}$ → $e^{-\beta\hat{H}}$ **Thermodynamics**

Langevin Equation (aka. stochatic quantisation)

Given an action $S(x)$

Stochastic process for x:

$$
\frac{dx}{d\tau} = -\frac{\partial S}{\partial x} + \eta(\tau)
$$

Gaussian noise
\n
$$
\langle \eta(\tau) \rangle = 0
$$
\n
$$
\langle \eta(\tau) \eta(\tau') \rangle = \delta(\tau - \tau')
$$

Random walk in configuration space

Averages are calculated along the trajectories:

$$
\langle O \rangle = \lim_{\tau \to \infty} \frac{1}{T} \int_{0}^{T} O(x(\tau)) d\tau = \frac{\int e^{-S(x)} O(x) dx}{\int e^{-S(x)} dx}
$$

Numerically, results are extrapolated to $\Delta \tau \rightarrow 0^{\circ}$

Complex Langevin Equation

Stochastic process for x: d x $\overline{d\,\tau}$ =− ∂ S $\overline{\partial} \overline{X}$ $+n(\tau)$ Gaussian noise $\langle \eta(\tau) \rangle = 0$ Given an action $S(x)$ $\langle n(\tau) n(\tau') \rangle = \delta(\tau - \tau')$ The field is complexified real scalar -> complex scalar $link$ variables: $SU(N)$ \longrightarrow $SL(N, C)$ compact non-compact det $(U)=1$, $U^+ \neq U^{-1}$ d x $\overline{d\,\tau}$ =− ∂ S $\overline{\partial} X$ $+n(\tau)$

Analytically continued observables are calculated along the trajectories:

$$
\langle O \rangle\!=\!\text{lim}_{\tau \to \infty} \frac{1}{T} \int_{0}^{T} O\!\left(\,x(\tau)\!+\!iy(\tau)\right)\!d\,\tau \qquad \qquad \langle \,x^2 \rangle_{\text{real}} \,\to\, \langle \,x^2 \!-\! y^2 \rangle_{\text{complexified}}
$$

$$
\frac{1}{Z}\int P_{comp}(x)O(x)dx = \frac{1}{Z}\int P_{real}(x,y)O(x+iy)dx dy \quad ?
$$

Gaussian Example

For nontrivial models CLE may or may not give a correct answer

 $S(\varphi) = i \beta \cos \varphi + i \varphi$

Do we know if it's correct?

[See talk of Michael Mandl] different cycles contributing Reasons for incorrect results: slowly decaying distributions (Boundary terms) non-holomorphic actions

Diagnostic observables: boundary terms certain non-holomorphic observables, histograms

What can we do if it's incorrect?

Change variables Use a kernel (see below) Use a "regularization" [See talk of Michael Hansen] Quantum oscillator

$$
S = \int dt \frac{1}{2} \left| \frac{d\phi}{dt} \right|^2 - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4} \phi^4
$$
Path integral $\int D \phi e^{iS}$

Suppose we are interested in $\langle -\beta \hat{H} \hat{\boldsymbol{\phi}}(t) \hat{\boldsymbol{\phi}}(0) \rangle$ \equiv Tr $(e^{-\beta \hat{H}t})$ *e* i t \hat{H} $\hat{\phi}$ e^{$-i$ t \hat{H}} $\hat{\phi}$ $)$

This is time ordered if we take a complex time contour

Schwinger-Keldysh contour

$$
e^{-\beta \hat{H}} e^{it\hat{H}} = e^{\int_t^{-i\beta} dt \hat{H}}
$$

We can shift the contour into the complex plane

Discretisation

given t_n on a complex time-plane

 $\Delta t_n = t_{n+1} - t_n$

$$
S = \sum \Delta t_n \left| \frac{1}{2} \left(\frac{\phi_{n+1}}{\Delta t_n} - \frac{\phi_n}{2} \right)^2 - \frac{1}{2} m^2 \phi_n^2 - \frac{\lambda}{4} \phi_n^4 \right|
$$

Thermal average

$$
\text{Tr} \big(e^{-\beta \hat{H}} e^{it \hat{H}} \hat{\phi} e^{-it \hat{H}} \hat{\phi} \big)
$$

Path starts at $t=0$ Path ends at $t = -i\beta$ Periodical boundary conditions

Non-equilibrium time evolution

[Berges, Borsányi, Sexty, Stamatescu (2006)]

Using some initial density matrix ρ

 $\text{Tr}\big(\rho\,e^{it\hat{H}}\,\hat{\phi}\,e^{-it\hat{H}}\,\hat{\phi}\big)$

at $t=0$: two separate integrals for ϕ_i and ϕ_f Fields no longer periodic

Especially easy in CLE with gaussian initial density matrix

Real-time two point function of quantum oscillator

Thermal equilibrium: periodic boundary cond. Imaginary extent gives

 $\beta=1$ Asymmetric contour: 0.01 0.99_B Im t Re t

1 $\overline{1}$ short real-time extent [Berges, Borsanyi, Sexty, Stamatescu (2006)]

large real-time extent Boundary terms appear

Kernels in the Langevin equation

z˙=− ∂ *S* ∂ *z* +η → *z*˙=−*K* (*z*) ∂ *S* ∂ *z* + $\partial K(z)$ ∂ *z* +√*K*(*z*)η Introducing a Kernel _[Soderberg (1987), Okamoto et. al. (1988)]

For real action, The contraction of the contraction of the real action. equilibrium distribution unchanged.

 $\partial_{\tau}P=\partial_{x}K(x)(\partial_{x}+S')P$

Kernel = field dependent diffusion const.

For complex action Complexified distribution might change, boundary terms may or may not appear/disappear results are still a linear combination of integration cycles for zero boundary

Many variables - matrix Kernel

$$
\frac{d\,\phi_i}{d\,\tau} = -H_{ij}(\phi)H_{jk}^T(\phi)\frac{\partial\,S}{\partial\,\phi_k} + \partial_k(H_{ij}(\phi)H_{jk}^T(\phi)) + H_{ij}(\phi)\eta_j
$$

Can one use a Kernel to decrease boundary terms in the CLE? [see also: Michael Mandl's talk]

Yes! search for a kernel using stochastic gradient descent Loss function: Size of the distribution in imaginary directions

[Rothkopf, Larsen, Alvestad(2023); Lampl, Sexty (2024)]

Gradient descent

$$
\phi_i \prime = -H_{ij} H_{jk}^T \frac{\partial S}{\partial \phi_k} \Delta \tau + H_{ij} \eta_j \sqrt{2 \Delta \tau_i}
$$

1. collect average for
$$
\frac{\partial \sum (\text{Im } \phi_i)^2}{\partial H_{ij}} = \partial_{H_{ij}} \text{Loss}
$$
 during CL simulation
with current *H*

with current *H*

2. update H *^Hij* [→] *^Hij*−∂*^Hij*

$$
H_{ij} \rightarrow H_{ij} - \partial_{H_{ij}} \text{Loss}
$$

(b) Convergence of the real part of the matrix element $H_{0,16}$

First step: Field independent matrix kernel

[Lampl, Sexty (2024)]

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

t=1.2 Real-time extent

real part imaginary part

Boundary terms

Boundary terms of $\phi(t)^2$

Without Kernel:

Actually, for an anharmonic quantum oscillator it's also easy to calculate exact results (e.g. diagonalize Hamiltonian) Compare to exact

t=1.2

t=1.6

Without kernel With learned kernel

Increasing real time extent, boundary terms appear again

t=2.0

Without kernel With learned kernel

t=2.0

Scalar fields in 1+1 dimension [Alvestad, Rothkopf, Sexty (2024)]

Dense constant Kernel on the Schwinger-Keldysh contour

two point function: $\langle \phi(0)\phi(t)\rangle$

[Alexandru et. al. (2022)] Thimble result till $t=1.6$ CLE till t=3.2 (at least) $N_x = 16$ $N_t = 32$ $N_t = 4$

Summary

Real-time QFT Severe Sign problem

Studying quantum oscillator and scalar field theory Discretised on a Schwinger-Keldysh-like temporal contour

Breakdown of CLE at large time-extents due to boundary terms kernels change breakdown time optimal kernel through machine learning

For 1+1d scalars CLE with optimal kernel Reaches furthest from ab initio methods at hand

Boundary terms as a volume integral

[Scherzer, Seiler, Sexty, Stamatescu (2018+2019)]

Calculating an observable defined on a compact boundary in many dimensions can be inconvenient

$$
\partial_{\tau} F_{O}(Y, t, \tau=0) = B_{O}(Y, t, \tau=0) =
$$

$$
\int_{-Y}^{Y} P(x, y, t) L_{c} O(x+iy) - \int_{-Y}^{Y} (L^{T} P) O(x+iy, 0)
$$

Observable with a cutoff easy to do in many dimensions Vanishes as process equilibrates

 $L_c O\!\left(x\!+\!iy\right)$ consistency conditions $\qquad \approx \textsf{Schwinger-Dyson eqs}.$

Order of limits crucial

 $\lim_{t\to\infty}\lim_{Y\to\infty}\int_{-Y}^{Y}P(x,y,t)L_cO(x+iy)$ can be undefined

Measuring boundary terms

$$
\int_{-Y}^{Y} P(x,y,t) L_c O(x+iy) = \int P(x,y,t) L_c O(x+iy) \Theta(Y-y)
$$

$$
L_c = \sum \partial_i^2 + K_i \partial_i
$$

Many variables: define cutoff to extend SU(N) manifold to compact submanifold of SL(N,C)

e.g. Im *z*; max_{*i*} $Tr(U_i^* U_i - 1)^2$

Measure "unitarity norm" and observable

Analyze for any cutoff

Trick for second term:

$$
\sum K_i \partial_i O = \frac{1}{\epsilon} [O(z(\tau + \epsilon, \eta = 0)) - O(z(\tau))]
$$

Measure observable after doing a noiseless update step with stepsize ϵ